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Abstract
We analyse the finite-size corrections to the energy and specific heat of the
critical two-dimensional spin- 1

2 Ising model on a torus. We extend the analysis
of Ferdinand and Fisher to compute the correction of orderL−3 to the energy and
the corrections of orderL−2 andL−3 to the specific heat. We also obtain general
results on the form of the finite-size corrections to these quantities: only integer
powers ofL−1 occur, unmodified by logarithms (except of course for the leading
logL term in the specific heat); and the energy expansion contains only odd
powers of L−1. In the specific-heat expansion any power of L−1 can appear,
but the coefficients of the odd powers are proportional to the corresponding
coefficients of the energy expansion.

PACS numbers: 0550, 0570J, 6460C

1. Introduction

It is well known that phase transitions in statistical–mechanical systems can occur only in
the infinite-volume limit. In any finite system, all thermodynamic quantities (such as the
magnetic susceptibility and the specific heat) are analytic functions of all parameters (such
as the temperature and the magnetic field); but near a critical point they display peaks whose
height increases and whose width decreases as the volumeN = Ld grows, yielding the critical
singularities in the limit L → ∞. For bulk experimental systems (containing N ∼ 1023

particles) the finite-size rounding of the phase transition is usually beyond the experimental
resolution; but in Monte Carlo simulations (N � 106–107) it is visible and is often the dominant
effect.

Finite-size scaling theory [1–4] provides a systematic framework for understanding finite-
size effects near a critical point. The idea is simple: the only two relevant length scales are the
system linear size L and the correlation length ξ∞ of the bulk system at the same parameters,
so everything is controlled by the single ratio ξ∞/L1. If L � ξ∞, then finite-size effects are

1 This is true only for systems below the upper critical dimension dc. For Ising models with short-range interaction,
dc = 4.
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negligible; for L ∼ ξ∞, thermodynamic singularities are rounded and obey a scaling ansatz
O ∼ LpOFO(ξ∞/L) where pO is a critical exponent and FO is a scaling function. Finite-size
scaling is the basis of the powerful phenomenological renormalization group method (see [3]
for a review); and it is an efficient tool for extrapolating finite-size data from Monte Carlo
simulations so as to obtain accurate results on critical exponents, universal amplitude ratios
and subleading exponents ( [5–8], and references therein2). In particular, in systems with
multiplicative and/or additive logarithmic corrections (such as the two-dimensional four-state
Potts model [10]), a good understanding of finite-size effects is crucial for obtaining reliable
estimates of the physically interesting quantities.

In finite-size-scaling theory for systems with periodic boundary conditions, three
simplifying assumptions have frequently been made:

(a) The regular part of the free energy, freg, is independent of the lattice size L [4] (except
possibly for terms that are exponentially small in L).

(b) The scaling fields associated with the temperature and magnetic field (i.e. gt and gh,
respectively) are independent of L [11].

(c) The scaling field gL associated with the lattice size is equal to L−1 exactly, with no
corrections L−2, L−3, . . . [4].

Moreover, in the nearest-neighbour spin- 1
2 2D Ising model, it has further been assumed that:

(d) There are no irrelevant operators [12, 13].

Unfortunately, the combination of these four assumptions implies that the asymptotic
expansions for the energy and specific heat for the Ising model at criticality terminate at
order 1/L (see [14]). However, the numerical results presented in [7, 14] (as well as the
analytic results presented in this paper) show this to be false. The problem, therefore, is
to determine which one(s) of these assumptions are invalid, and why. Assumption (c) is
extremely plausible from renormalization-group considerations, at least for periodic boundary
conditions; and assumption (d) has been confirmed numerically to order (T − Tc)

3 at least
as regards the bulk behaviour of the susceptibility [13]. However, both numerical [15, 16]
and theoretical [17] evidence has recently emerged suggesting that irrelevant operators do
contribute to the susceptibility at order (T − Tc)

4.
In a classic paper, Ferdinand and Fisher [18] considered the energy and the specific heat

of the two-dimensional Ising model on a torus of length L and aspect ratio ρ, and obtained
the first two (three) terms of the large-L asymptotic expansion of the energy (specific heat)
at fixed x ≡ L(T − Tc) (this is the finite-size-scaling regime) and fixed ρ3. In particular, at
criticality (T = Tc) they computed the finite-size corrections to both quantities to order L−1.
In 1999, Hu et al [22] published (without details) the correction of orderL−3 to the energy and
showed that the L−2 correction is absent4. In this paper we compute explicitly the following
finite-size corrections:

• The correction of order L−3 to the energy.
• The corrections of order L−2 and L−3 to the specific heat.

2 Finite-size scaling has also been successfully applied to data from transfer-matrix computations [9].
3 Ferdinand and Fisher [18] also obtained the position of the maximum of the specific heat xmax(ρ) which depends
on the torus aspect ratio ρ. Furthermore, Kleban and Akinci [19, 20] showed that an excellent approximation can
be obtained by keeping only the two largest eigenvalues of the transfer matrix, and they interpreted their results in
terms of domain-wall energies. This approximation is already good at ρ = 1 and becomes exponentially better with
increasing ρ. This method could surely simplify the computations presented in this paper; but here we are interested
in the exact values of the finite-size-scaling corrections. These results are used as theoretical inputs in [14, 21].
4 The published version of [22] contains several misprints in the crucial formula (3.23). Version 2 of this paper in
the Los Alamos preprint archive cond-mat contains the correct formula.



Exact finite-size-scaling corrections to the critical two-dimensional Ising model on a torus 1313

Furthermore, we also find new insights into the general analytic structure of the finite-size
corrections to this model. We show that in the critical two-dimensional Ising model:

• The finite-size corrections to the energy and specific heat are always integer powers of
L−1, unmodified by logarithms (except of course for the leading logL term in the specific
heat).

• In the finite-size expansion of the energy, only odd integer powers of L−1 occur.
• In the finite-size expansion of the specific heat, any integer powers of L−1 can occur.

However, the coefficients of the odd powers of L−1 in this expansion are proportional to
the corresponding coefficients in the energy expansion.

These results can be compared to the general renormalization-group expression for the finite-
size corrections to the energy and the specific heat [14], in which arbitrary powers of L−1 and
terms of the type L−1+p logL (where p is some real number) can occur. The implications
of these results for understanding which one(s) of the assumptions (a)–(d) are invalid will be
analysed elsewhere [21].

The plan of this paper is as follows: in section 2 we present our definitions and notation
(generally following [18]). In sections 3 and 4 we present the computation of the next terms in
the asymptotic expansions for the energy and specific heat, respectively. Finally, in section 5
we present our arguments about the type of finite-size-scaling correction that can occur in these
two expansions. We have summarized in appendix A the basic definitions and properties of
the θ -functions that will be needed in this paper. In appendix B we recall the Euler–MacLaurin
formula.

Remark. After the completion of this paper, we learned that similar results have been
independently obtained by Izmailian and Hu [23].

2. Basic definitions

Let us consider an Ising model on a torus of sizem×n at zero magnetic field. The Hamiltonian
is given by5

H = −K
∑
〈i,j〉

σiσj . (2.1)

The partition function can be written as

Zmn =
∑
{σ }

e−H = 1
2 (2 sinh 2K)mn/2

4∑
i=1

Zi(K, n,m) (2.2)

where the partial partition function Z1 is given by

Z1(K, n,m) =
n−1∏
r=0

2 cosh
(mγ2r+1

2

)
(2.3)

and the rest are defined analogously using the first three columns of the following table (the
last two columns will be needed afterwards in (2.9)/(4.18)).

Z1: 2r + 1 cosh tanh sech
Z2: 2r + 1 sinh coth i csch
Z3: 2r cosh tanh sech
Z4: 2r sinh coth i csch.

(2.4)

5 In this paper we are following basically the notation used by Ferdinand and Fisher in [18], with a few minor
modifications.
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The quantities γl = γl(K, n) are defined by

cosh γl ≡ cl = cosh 2K coth 2K − cos

(
lπ

n

)
. (2.5)

In particular, we have

γ0 = 2K + log(tanhK) (2.6a)

γl = log

(
cl +

√
c2
l − 1

)
l �= 0. (2.6b)

The quantities γl (2.6) satisfy γl = γ2n−l , and γl is a monotonically increasing function of l
for 0 � l � n.

The internal energy density E and the specific heat CH are given by

E(K,m, n) = − coth 2K − 1

mn

[∑4
i=1 Z

′
i∑4

i=1 Zi

]
(2.7)

CH(K,m, n) = −2csch22K +
1

mn


∑4

i=1 Z
′′
i∑4

i=1 Zi
−
(∑4

i=1 Z
′
i∑4

i=1 Zi

)2

 (2.8)

where the primes denote derivatives with respect to the coupling constant K . In computing
observables (2.7)/(2.8), the following formulae, derived from (2.3), will be useful:

Z′
1

Z1
= m

2

n−1∑
r=0

γ ′
2r+1 tanh

(mγ2r+1

2

)
(2.9a)

Z′′
1

Z1
=
[
m

2

n−1∑
r=0

γ ′
2r+1 tanh

(
mγ2r+1

2

)]2

+
m

2

n−1∑
r=0

γ ′′
2r+1 tanh

(mγ2r+1

2

)

+
(m

2

)2 n−1∑
r=0

[
γ ′

2r+1sech
(mγ2r+1

2

)]2
. (2.9b)

The analogous ratios for i = 2, 3, 4 can be obtained from (2.9a)/(2.9b) by using (2.4) (Note
that the third column of (2.4) does not play any role here.) The factor i in the entry i csch
of (2.4) changes the sign of the last term of (2.9b) for Z′′

2 and Z′′
4 .

The critical point of the Ising model corresponds to the self-dual point sinh 2Kc = 1. That
is

Kc = 1
2 log(1 +

√
2). (2.10)

In this paper we are concerned with the finite-size-scaling corrections to the energy and specific
heat of the critical Ising model. We will express all our results in terms of the length n and the
aspect ratio of the torus ρ6:

ρ = m

n
. (2.11)

Indeed, all our results are invariant under the transformation n ↔ m. Here we shall show that
the energy and specific heat at criticality have asymptotic expansions of the form

−E(Kc,m, n) ≡ −Ec(n, ρ) = E0 +
∞∑
k=1

Ek(ρ)

nk
(2.12)

CH(Kc, n,m) ≡ CH,c(n, ρ) = C00 log n + C0(ρ) +
∞∑
k=1

Ck(ρ)

nk
. (2.13)

6 In conformal-field-theory language, the modular parameter of the torus is τ = iρ [24], where this τ has nothing to
do with the temperature-like parameter defined in (2.14).
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The coefficientsE0 andC00 can be obtained from Onsager’s solution [25];E1,C0, andC1 were
computed by Ferdinand and Fisher [18] and, finally, the fact that E2 = 0 and the expression
for E3 were given (without details) in [22]. Here we shall compute explicitly the terms E3, C2

and C3, and shall show that E2 = E4 = E6 = · · · = 0.
Let us now see how γl and its derivatives behave close to the critical point (2.10). To do

so, we introduce the finite-size-scaling parameter τ as in [18, equation (2.12)]7:(τ
n

)2
= 1

2

(
sinh 2K +

1

sinh 2K

)
− 1. (2.14)

Thus, τ = 0 corresponds to the critical point K = Kc, and τ �= 0 fixed corresponds to the
finite-size-scaling regime n → ∞,K → Kc with n(K−Kc) fixed. Hereafter, we will consider
the behaviour of all quantities as a function of τ in the limit τ → 0. The value of γ0 at τ = 0
is zero; its behaviour close to the critical point is given by

γ0(τ, n) = −2
(τ
n

)
+ O

[(τ
n

)3
]
. (2.15)

The derivatives of γ0 with respect to K are non-vanishing at criticality:

γ ′
0(0, n) ≡ dγ0

dK

∣∣∣∣
T=Tc

= 4 (2.16a)

γ ′′
0 (0, n) ≡ d2γ0

dK2

∣∣∣∣
T=Tc

= −4
√

2. (2.16b)

(Note that prime continues to denote d/dK , not d/dτ . However, the final result will be
expressed in terms of τ (in the limit τ → 0), hence the notation γ ′

0(0, n).) For a generic l �= 0
the critical value of γl is given by

γl(0, n) = 2 log

[√
1 + sin2

(
lπ

2n

)
+ sin

(
lπ

2n

)]
(2.17)

while its derivatives with respect to K are given by

γ ′
l = c′l√

c2
l − 1

(2.18a)

γ ′′
l = c′′l√

c2
l − 1

− cl(c
′
l)

2

(c2
l − 1)3/2

(2.18b)

where the quantity c′l vanishes at criticality as

c′l(τ, n) = c′(τ, n) = −8
(τ
n

)
+ O

[(τ
n

)2
]

(2.19)

and the quantity c′′l gives a non-zero value

c′′l (0, n) = c′′(0, n) = 16. (2.20)

We can write the partial partition functions Zi (cf (2.3)/(2.4)) in the following form:

Z1(τ, n, ρ) = P1(τ, n, ρ) exp

(
m

2

n−1∑
r=0

γ2r+1

)
(2.21a)

7 The parameter τ plays the same role as the usual finite-size-scaling parameter x ≡ L(T − Tc). Indeed, to leading
order in K −Kc we have τ = −2n(K −Kc).
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Z2(τ, n, ρ) = P2(τ, n, ρ) exp

(
m

2

n−1∑
r=0

γ2r+1

)
(2.21b)

Z3(τ, n, ρ) = P3(τ, n, ρ) exp

(
m

2

n−1∑
r=0

γ2r

)
[1 + e−mγ0 ] (2.21c)

Z4(τ, n, ρ) = P4(τ, n, ρ) exp

(
m

2

n−1∑
r=0

γ2r

)
[1 − e−mγ0 ] (2.21d)

where the quantities Pi(τ, n, ρ) are given by

logP1(τ, n, ρ) =
n−1∑
r=0

log(1 + e−mγ2r+1) (2.22a)

logP2(τ, n, ρ) =
n−1∑
r=0

log(1 − e−mγ2r+1) (2.22b)

logP3(τ, n, ρ) =
n−1∑
r=1

log(1 + e−mγ2r ) (2.22c)

logP4(τ, n, ρ) =
n−1∑
r=1

log(1 − e−mγ2r ). (2.22d)

The functions (2.22) give non-vanishing constants in the limit τ → 0 [18]:

logP1(0, n, ρ) = θ3

θ0
+ O(n−2) (2.23a)

logP2(0, n, ρ) = θ4

θ0
+ O(n−2) (2.23b)

logP3(0, n, ρ) = 1

2

θ2

θ0
eπρ/4 + O(n−2) (2.23c)

logP4(0, n, ρ) = θ2
0 + O(n−2) (2.23d)

where the functions θi with i = 2, 3, 4 are the usual θ -functions (see appendix A), and θ0 is
defined in (A.2).

Finally, we introduce the ratios

Ri(τ, n, ρ) = Zi(τ, n, ρ)

Z1(τ, n, ρ)
. (2.24)

Thus, from (2.21) we obtain

R1(τ, n, ρ) = 1 (2.25a)

R2(τ, n, ρ) = P2(τ, n, ρ)

P1(τ, n, ρ)
(2.25b)

R3(τ, n, ρ) = 2 cosh
(mγ0

2

)
P0(τ, n, ρ)

P3(τ, n, ρ)

P1(τ, n, ρ)
(2.25c)

R4(τ, n, ρ) = 2 sinh
(mγ0

2

)
P0(τ, n, ρ)

P4(τ, n, ρ)

P1(τ, n, ρ)
(2.25d)

where P0(τ, n, ρ) is defined as

logP0(τ, n, ρ) = m

2

[ n−1∑
r=1

γ2r −
n−1∑
r=0

γ2r+1

]
. (2.26)
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The sum of the four ratios is denoted by R

R(τ, n, ρ) =
4∑
i=1

Ri(τ, n, ρ). (2.27)

The ratios R2 and R3 have a non-vanishing value at the critical point [18]

R2(0, n, ρ) = θ4

θ3
+ O(n−2) (2.28a)

R3(0, n, ρ) = θ2

θ3
+ O(n−2) (2.28b)

while R4 vanishes at K = Kc:

R4(τ, n, ρ) = − sinh(τρ)[θ2θ4 + O(n−2)] + O(τ 2). (2.29)

The sum of the four ratios at criticality is a non-zero constant

R(0, n, ρ) = θ2 + θ3 + θ4

θ3
+ O(n−2). (2.30)

The function P0 has also a non-vanishing limit at criticality:

P0(0, n, ρ) = e−πρ/4[1 + O(n−2)]. (2.31)

3. Finite-size-scaling corrections to the internal energy

The internal energy at the critical point Ec is equal to

−Ec(n, ρ) = −E(Kc, n, ρ) =
√

2 + lim
τ→0

1

mnR

4∑
i=1

Z′
i

Zi
Ri. (3.1)

The termsZ′
i/Zi with i = 1, 2 vanish trivially as all the γ ′

2r+1 vanish. The termZ′
3/Z3 does not

vanish due to the contribution of γ ′
0; but its total contribution is also zero as it is multiplied by

tanh(mγ0/2), which vanishes at criticality. The only non-vanishing contribution comes from
i = 4:

Z′
4

Z4
= m

2
γ ′

0 coth
(mγ0

2

)
∼ −2m coth(ρτ) as τ → 0. (3.2)

So we obtain the formula

−Ec(n, ρ) =
√

2 − 2

n
lim
τ→0

R4(τ, n, ρ)

R(0, n, ρ)
coth(ρτ) (3.3)

where R(0, n, ρ) is given by (2.30). Note that, by (2.29), R4(τ, n, ρ) ∼ τ as τ → 0, so
R4(τ, n, ρ) coth(ρτ) gives rise to a non-zero result in this limit.

The goal of this section is to extend the Ferdinand–Fisher asymptotic expansion [18] to
order n−4. Let us first consider the quantity logP4 at criticality:

logP4(0, n, ρ) =
n−1∑
r=1

log(1 − e−mγ2r ) = −2
∞∑
p=1

1

p

� n2 �∑
r=1

e−mpγ2r (3.4)

where �x� is the largest integer �x. The sum over r can be split into two parts:

� n2 �∑
r=1

=
s(n)−1∑
r=1

+
� n2 �∑
r=s(n)

(3.5)
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where s(n) will be chosen afterwards. We can drop the second sum in (3.5), as it gives a
contribution of order ∼n| log[1 − exp(−mγ2s)]| ∼ n exp[−2πρs(n)]. Instead of the choice
s(n) = (3/2πρ) log n made by Ferdinand and Fisher, we shall use the choice

s(n) = M

2πρ
log n (3.6)

with M an arbitrary positive integer, to ensure that the total contribution of the second sum
in (3.5) is as small as we want (namely, ∼n−(M−1)).

We can use the following expression for γ2r at criticality [18]:

1

2
γ2r (0, n) = log

[
sin
( rπ
n

)
+

√
1 + sin2

( rπ
n

) ]
(3.7)

to obtain an asymptotic series of mγ2r in terms of n−1:

mγ2r (0, n) = 2πρr − 2ρπ3

3

r3

n2
+
ρπ5

3

r5

n4
+ O(n−6). (3.8)

We should recall that the choice of s(n) (3.6) for any integer M guarantees that the ratio r/n
is a small quantity for 0 � r � s(n) (as r/n � s(n)/n � 1 if n is large enough).

Remark. It is interesting to note that only even powers of n−1 occur in the expansion (3.8).

Plugging the expansion (3.8) into equation (3.4) we obtain

logP4(0, n, ρ) = −2
∞∑
p=1

1

p

s(n)−1∑
r=1

e−2πrpρ − 4π3ρ

3

∞∑
p=1

s(n)−1∑
r=1

r3

n2
e−2πrpρ + O(n−4). (3.9)

We can extend the sums
∑s(n)−1

r=1 to
∑∞

r=1 in (3.9) by introducing an error of order n−M . The
second term of the rhs of (3.9) can be expressed in terms of

∞∑
r=1

r3e−2πrpρ = 1

4

[
1

sinh2(πpρ)
+

3

2

1

sinh4(πpρ)

]
. (3.10)

Finally, we can write P4(n, ρ) in the following form:

P4(0, n, ρ) = θ2
0

[
1 − 1

n2

p1(ρ)

2
+ O(n−4)

]
(3.11)

which improves (2.23d). The function p1(ρ) is given by

p1(ρ) = 2π3ρ

3

∞∑
m=1

[
1

sinh2(mπρ)
+

3

2

1

sinh4(mπρ)

]
. (3.12)

Using similar methods one can obtain the improved version of (2.23):

P1(0, n, ρ) = θ3

θ0

[
1 − 1

n2

(
p̃2 − p̃1

2

)
+ O(n−4)

]
(3.13a)

P2(0, n, ρ) = θ4

θ0

[
1 +

1

n2

(p1

2
− p2

)
+ O(n−4)

]
(3.13b)

P3(0, n, ρ) = 1

2

θ2

θ0
eπρ/4

[
1 +

1

n2

p̃1

2
+ O(n−4)

]
(3.13c)
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where p2, p̃1 and p̃2 are defined by

p̃1(ρ) = 2π3ρ

3

∞∑
m=1

(−1)m+1

[
1

sinh2(mπρ)
+

3

2

1

sinh4(mπρ)

]
(3.14a)

p2(ρ) = π3ρ

24

∞∑
m=1

[
1

sinh2(mπρ/2)
+

3

2

1

sinh4(mπρ/2)

]
(3.14b)

p̃2(ρ) = π3ρ

24

∞∑
m=1

(−1)m+1

[
1

sinh2(mπρ/2)
+

3

2

1

sinh4(mπρ/2)

]
. (3.14c)

Finally, we have to improve the expression of logP0 (2.31). Let us first consider the sum

m

2

n−1∑
r=1

γ2r (0, n) = m

n−1∑
r=0

log

[
sin
( rπ
n

)
+

√
1 + sin2

( rπ
n

) ]
. (3.15)

We can apply the Euler–MacLaurin formula (B.4) to the function f (p) = log(sinp +√
1 + sin2 p) with L = 2n and α = 1/2. The result is8

m

2

n−1∑
r=1

γ2r (0, n) = 2mn

π
G− πρ

6
− π3ρ

180

1

n2
+ O(n−4) (3.16)

whereG ≈ 0.915 965 594 177 219 is Catalan’s constant. Using similar methods we obtain the
other sum appearing in (2.31)9:

m

2

n−1∑
r=0

γ2r+1(0, n) = 2mn

π
G− πρ

12
− 7π3ρ

1440

1

n2
+ O(n−4). (3.17)

Putting (3.16) and (3.17) together we obtain the improved version of (2.31)

P0(0, n, ρ) = e−πρ/4
[

1 − p3(ρ)

n2
+ O(n−4)

]
(3.18)

where p3(ρ) is defined as

p3(ρ) = π3

96
ρ. (3.19)

Improved expressions for the ratios Ri(τ= 0, n, ρ) are easily obtained from equations
(3.11)/(3.13)

R2(0, n, ρ) = θ4

θ3

[
1 − 1

n2

(
p2 − p1

2
+ p̃2 − p̃1

2

)
+ O(n−4)

]
(3.20a)

R3(0, n, ρ) = θ2

θ3

[
1 +

1

n2
(p̃1 − p̃2 − p3) + O(n−4)

]
(3.20b)

R4(0, n, ρ) = − sinh(ρτ)θ2θ4

[
1 − 1

n2

(
p1

2
+ p̃2 − p̃1

2
+ p3

)
+ O(n−4)

]
. (3.20c)

Plugging the formulae (3.20) into the expression for the critical energy density (3.1) we
obtain

−Ec(n, ρ) =
√

2 +
E1(ρ)

n
+
E3(ρ)

n3
+ O

(
1

n5

)
(3.21)

8 It is easy to verify that f (3)(p) is integrable over [0, π ]. This means that the next term in the expansion (3.16) is
of order O(n−4).
9 The leading terms of equations (3.16)/(3.17) were obtained by Ferdinand [26].
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Table 1. Values of the coefficient E3(ρ) from (3.23) for several values of the torus aspect ratio ρ.

ρ E3(ρ)

1 −0.206 683 145 336 864
2 −0.184 202 899 115 749
3 −0.153 247 694 215 529
4 −0.102 599 506 933 675
5 −0.061 201 301 359 728
6 −0.034 200 082 347 112
7 −0.018 369 506 074 164
8 −0.009 614 465 215 356
9 −0.004 941 568 941 314

10 −0.002 505 707 497 764
15 −0.000 074 110 828 658
20 −0.000 001 946 957 522
∞ 0

where E1(ρ) [18] and E3(ρ) are given by the expressions

E1(ρ) = 2θ2θ3θ4

θ2 + θ3 + θ4
(3.22)

E3(ρ) = − 2θ2θ3θ4

(θ2 + θ3 + θ4)2

{
p1(ρ)

(
θ4 +

θ2 + θ3

2

)
− p2(ρ)θ4

+p̃1(ρ)

(
θ2 − θ3

2

)
+ p̃2(ρ)θ3 + p3(ρ)

(
θ3 + θ4

)}
. (3.23)

The numerical values of the function E3(ρ) are given in table 1.

Remarks. (1) After the completion of this work, Professor Izmailian informed us that the
correct expression for the coefficient E3(ρ) had been published in the revised version of [22]
(which can be found in the Los Alamos preprint archive cond-mat). Their expression is
surprisingly simple,

E3(ρ) = −π
3ρ

48

θ2θ3θ4

(θ2 + θ3 + θ4)2
[θ9

2 + θ9
3 + θ9

4 ]. (3.24)

Indeed, the numerical value of (3.24) coincides with our result (3.23). It would be interesting
to find the analytic identities proving the equivalence of (3.23) and (3.24).

(2) Let us check that (3.23) has the correct behaviour under m ↔ n (ρ ↔ 1/ρ). Indeed,
the (trivial) fact that Ec(n,m) = Ec(m, n) implies that we should have

E1(ρ) = E1(1/ρ)

ρ
(3.25a)

E3(ρ) = E3(1/ρ)

ρ3
. (3.25b)

The first equation (3.25a) can be easily proved by using Jacobi’s imaginary transformation
of the θ -functions (A.4). Using these transformations one can easily show that the second
equation (3.25) holds for (3.24). We have also verified numerically that (3.25) holds for our
result (3.23) to high accuracy using MATHEMATICA.

(3) There is another simple way to test our results: We can first compute the exact
value of the critical energy density Ec(n, ρ) for several values of n and a fixed value of ρ
by using (2.7)/(2.3)/(2.4). Then, we subtract the first two terms of the expansion (3.21) and fit
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Table 2. Fits of the function −Ec(n, ρ)−
√

2−E1(ρ)/n (cf (3.22)) to the ansatzB3n
−3 +B5n

−5 +
B7n

−7 for several values of the torus aspect ratio ρ.

ρ = 1 ρ = 2 ρ = 3

B3 −0.206 683 145 3369 −0.184 202 899 1157 −0.153 247 694 2155
B5 −0.730 182 312 35 −0.416 996 817 −0.316 738 073
B7 −4.936 2 −3.405 −2.693

the resulting function to the ansatz B3n
−3 +B5n

−5 +B7n
−7. In table 2 we show the numerical

results for such fits with ρ = 1, 2 and 3. For ρ = 1 we have used in the fits 1309 different values
between n = 16 and 4096. For ρ = 2, 3 we have used ten different values corresponding
to n = 2p, p = 2, . . . , 11 (that is why our estimates are more accurate for ρ = 1 than for
ρ = 2, 3). We find an excellent agreement among the numerical estimates forB3 and the exact
values of E3 quoted in table 1. The value of B5 for ρ = 1 also agrees well with the value
≈ − 0.730 1823 obtained by Izmailian [27] using analytic means.

(4) In the limit ρ → ∞ of an infinitely long torus (i.e. a cylinder) we have

E1(∞) = E3(∞) = 0 (3.26)

as limρ→∞ ρθ2 = 0, and limρ→∞ θ3 = limρ→∞ θ4 = 1 (cf (A.1)).

4. Finite-size-scaling corrections to the specific heat

The goal of this section is to extend the asymptotic series of Ferdinand and Fisher [18] for the
specific heat to order n−3. Let us start with the definition (2.8) and see which terms contribute
to the critical value ofCH. The first term in (2.8) is just a constant (=−2); while the third term
is quite similar to that already obtained for the energy density (3.3) [=−4ρR−2R2

4 coth2(τρ)].
The most involved term is the second one. Using the analysis of Ferdinand and Fisher, we can
obtain the final expression for the critical specific heat CH,c(n, ρ) = CH(Kc, n, ρ):

CH,c(n, ρ) = −2 + 4Q1,− − 4R3(0, n, ρ)

R(0, n, ρ)
[Q1,+ −Q1,−] + 4ρ

R3(0, n, ρ)

R(0, n, ρ)

− 4

R(0, n, ρ)

3∑
i=1

Ri(0, n, ρ)Q1,i +
2
√

2

n
lim
τ→0

R4(τ, n, ρ)

R(0, n, ρ)
coth τρ

−4ρ lim
τ→0

(
R4(τ, n, ρ)

R(0, n, ρ)
coth τρ

)2

(4.1)

where the Q1,± and Q1,i are those defined in [18] evaluated at τ = 0:

Q1,1(n, ρ) = 1

n

n−1∑
r=0

1 − tanh(mγ2r+1

2 )

sin( (r+1/2)π
n

)[1 + sin2(
(r+1/2)π

n
)]1/2

(4.2a)

Q1,2(n, ρ) = 1

n

n−1∑
r=0

1 − coth(mγ2r+1

2 )

sin( (r+1/2)π
n

)[1 + sin2(
(r+1/2)π

n
)]1/2

(4.2b)

Q1,3(n, ρ) = 1

n

n−1∑
r=1

1 − tanh(mγ2r

2 )

sin( rπ
n
)[1 + sin2( rπ

n
)]1/2

(4.2c)

Q1,4(n, ρ) = 1

n

n−1∑
r=1

1 − coth(mγ2r

2 )

sin( rπ
n
)[1 + sin2( rπ

n
)]1/2

(4.2d)
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Q1,−(n, ρ) = 1

n

n−1∑
r=0

1

sin( (r+1/2)π
n

)[1 + sin2(
(r+1/2)π

n
)]1/2

(4.2e)

Q1,+(n, ρ) = 1

n

n−1∑
r=1

1

sin( rπ
n
)[1 + sin2( rπ

n
)]1/2

. (4.2f)

The terms with the factors Ri/R (i = 3, 4) can be obtained easily using the results
of section 3. Let us first consider the quantity Q1,+(n, ρ) (4.2f). The first step consists in
expanding the factor [1 + sin2(rπ/n)]−1/2 in equation (4.2f) in power series of sin(rπ/n):

Q1,+ = 1

n

n−1∑
r=1

1

sin( rπ
n
)

+
1

n

n−1∑
r=1

∞∑
k=1

(−1/2
k

)
sin2k−1

( rπ
n

)
(4.3)

≡ Q
(1)
1,+ +Q(2)

1,+. (4.4)

The computation of Q(2)
1,+ is done by applying the Euler–MacLaurin formula (B.4) to the

function f (p) = sin2k−1(p) with L = 2n and α = 1/2. The result is

Q
(2)
1,+(n, ρ) = − log 2

π
+
π

12

1

n2
+ O(n−4). (4.5)

The computation of the divergent part Q(1)
1,+ is a little more involved. The idea is to apply the

Euler–MacLaurin formula (B.4) to the function f (p) = sin−1(p) − 1/p + 1/(p − π) with
L = 2n and α = 1/2:

1

n

n−1∑
r=0

[
sin−1

( rπ
n

)
− n

rπ
+

n

π(r − n)

]
= 2

π
log

2

π
+
π

6n2

(
1

π2
− 1

6

)
+ O(n−4)

= Q
(1)
1,+ − 2

π

n−1∑
r=1

1

r
− 1

πn
. (4.6)

Using the well known asymptotic expansion [28] (see also (5.5))
L∑
r=1

1

r
= logL + γE +

1

2L
− 1

12L2
+ O(L−4) (4.7)

(where γE ≈ 0.577 215 6649 is the Euler constant) we finally obtain

Q
(1)
1,+(n, ρ) = 2

π

[
log n + γE + log

2

π
− π2

72n2
+ O(n−4)

]
. (4.8)

Putting together (4.5)/(4.8) we arrive at the final result

Q1,+(n, ρ) = 2

π

[
log n + γE + log

21/2

π
+
π2

36n2
+ O(n−4)

]
. (4.9)

Using similar methods we obtain10

Q1,−(n, ρ) = 2

π

[
log n + γE + log

25/2

π
− π2

72n2
+ O(n−4)

]
. (4.10)

The last part consists in evaluation of the Q1,i (with i = 1, 2, 3) in (4.2). For brevity we
will perform explicitly the simplest caseQ1,4(n, ρ) (4.2d). The first step is to expand the term
1 − coth(mγ2r/2) as a power series in exp(−mγ2r )

Q1,4(n, ρ) = 2

n

� n2 �∑
r=1

∞∑
p=1

e−mpγ2r

sin( rπ
n
)

√
1 + sin2( rπ

n
)

. (4.11)

10 The leading term of this equation was obtained by Onsager [25].
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Then we split the sum over r as in (3.5). The term including the sum
∑[n/2]

r=s(n) gives a total
contribution of order n−(M−1) with the choice (3.6) for s(n). The second step is to plug
into (4.11) the expansion (3.8) for mγ2r

Q1,4 = −4

n

∞∑
p=1

s−1∑
r=1

e−2πrpρ

sin( rπ
n
)

√
1 + sin2( rπ

n
)

−8π3ρ

3n3

∞∑
p=1

p

s−1∑
r=1

r3 e−2πrpρ

sin( rπ
n
)

√
1 + sin2( rπ

n
)

+ O(n−4) (4.12a)

≡ Q
(a)
1,4 +Q(b)

1,4. (4.12b)

The computation of Q(b)
1,4 is quite easy. We expand the factors sin(rπ/n) in powers of

rπ/n:

Q
(b)
1,4 = −8π2ρ

3n2

∞∑
p=1

p

s(n)−1∑
r=1

r2e−2πrpρ + O(n−4). (4.13)

Then we can extend the sum
∑s(n)−1

r=1 to
∑∞

r=1 at an error of order n−(M+2) log2 n. Using the
fact that

∞∑
p=1

pe−2πrpρ = e−2πrρ

(1 − e−2πrρ)2
= 1

4 sinh2(πrρ)
(4.14)

we have that

Q
(b)
1,4 = −2π2ρ

3n2

∞∑
p=1

r2

sinh2(πrρ)
. (4.15)

The computation of Q(a)
1,4 follows the same steps:

Q
(a)
1,4 = − 4

π

∞∑
p=1

p

∞∑
r=1

1

r
e−2πrpρ +

4π

3n2

∞∑
p=1

p

∞∑
r=1

re−2πrpρ + O(n−4). (4.16)

In this case the error introduced by extending the sum
∑s(n)−1

r=1 to
∑∞

r=1 is of order n−M .
Using (4.14) we find that

Q
(a)
1,4 = 2

π

∞∑
r=1

1

r
[1 − coth(πrρ)] − 2π

3n2

∞∑
r=1

r[1 − coth(πrρ)] + O(n−4). (4.17)

Thus, we write the final result as

Q1,4(n, ρ) = Q
(0)
1,4(ρ) +

Q
(2)
1,4(ρ)

n2
+ O(n−4) (4.18a)

Q
(0)
1,4(ρ) = 2

π

∞∑
r=1

1

r
[1 − coth(πrρ)] (4.18b)

Q
(2)
1,4(ρ) = −2π

3

{ ∞∑
r=1

r[1 − coth(πrρ)] + πρ
∞∑
r=1

r2[i csch(πrρ)]2

}
. (4.18c)

The other three quantities Q1,i (4.2a)– (4.2c) can be computed in a similar way. The result
can be written as (4.18) using the translations given by (2.4). (In this case, the third column
of (2.4) does not play any role.) For i = 1, 2 we should make two slight modifications: (a) The
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Table 3. Values of the coefficient C2(ρ) from (4.22) for several values of the torus aspect ratio ρ.

ρ C2(ρ)

1 0.097 119 896 855 337
2 −0.326 865 280 829 340
3 −0.748 187 561 687 100
4 −0.877 385 104 391 125
5 −0.809 168 407 448 959
6 −0.682 469 414 146 146
7 −0.567 445 479 079 586
8 −0.483 401 539 198 706
9 −0.428 249 598 449 714

10 −0.394 311 952 593 824
15 −0.351 150 319 692 501
20 −0.349 140 134 316 672
∞ −0.349 065 850 398 866

factor r in (4.18) should be replaced by r + 1/2, and (b) the sums over r inQ1,1 andQ1,2 start
at r = 0 rather than at r = 1 (as in Q1,3 and Q1,4).

Putting all the pieces together we arrive at the final result

CH,c(n, ρ) = 8

π
log n + C0(ρ) +

C1(ρ)

n
+
C2(ρ)

n2
+
C3(ρ)

n3
+ O

(
1

n4

)
(4.19)

where the coefficients Ci(ρ) are given by

C0(ρ) = 8

π

(
log

25/2

π
+ γE − π

4

)
− 4

θ2 + θ3 + θ4

[
4

π

4∑
ν=2

θν log θν + ρ
θ2

2 θ
2
3 θ

2
4

θ2 + θ3 + θ4

]
(4.20)

C1(ρ) = −2
√

2
θ2θ3θ4

θ2 + θ3 + θ4
= −

√
2E1(ρ) (4.21)

C2(ρ) = −4ρ
θ2θ3θ4

θ2 + θ3 + θ4
E3(ρ)− π

9
− 4A3(ρ)

θ2

θ2 + θ3 + θ4

(
ρ − log 16

π

)

+
π

3

θ2

θ2 + θ3 + θ4
−16

π
[A2(ρ)θ4 + A3(ρ)θ2]

∑4
ν=2 θν log θν

(θ2 + θ3 + θ4)2
− 4

θ2 + θ3 + θ4
G(ρ)

(4.22)

C3(ρ) = −
√

2E3(ρ) (4.23)

where

G(ρ) = Q
(2)
1,1θ3 +Q(2)

1,2θ4 +Q(2)
1,3θ2 −Q

(0)
1,2A2(ρ)θ4 −Q

(0)
1,3A3(ρ)θ2 (4.24a)

A2(ρ) = p2(ρ) + p̃2(ρ)− 1
2 [p1(ρ) + p̃1(ρ)] (4.24b)

A3(ρ) = p3(ρ) + p̃2(ρ)− p1(ρ). (4.24c)

The expressions for C0 and C1 were first obtained by Ferdinand and Fisher [18]. The results
forC2 andC3 are new. In table 3 we show the values of the coefficientC2(ρ) for several values
of the aspect ratio ρ.

Remarks. (1) As shown by Ferdinand and Fisher using the Jacobi transformations (A.4), the
coefficient C0(ρ) satisfies the identity

C0(ρ) = C0(ρ
−1) +

8

π
log ρ. (4.25)
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Table 4. Fits of the functionCH,c(n, ρ)− (8/π) log n−C0(ρ)−C1(ρ)/n (cf (4.19)/(4.20)/(4.21))
to the ansatz D2n

−2 +D3n
−3 +D4n

−4 +D5n
−5 for several values of the torus aspect ratio ρ.

ρ=1 ρ=2 ρ=3

D2 0.097 119 896 855 −0.326 865 2808 −0.748 187 5617
D3 0.292 294 1107 0.260 5022 0.216 7250
D4 0.014 792 −1.063 5 −1.866 8
D5 1.0326 0.59 0.45

Indeed, from relations (4.21)/(4.23) we conclude that these two coefficients have the right
behaviour under the transformation ρ → 1/ρ (cf (3.25a)/(3.25b)). Finally, we have tested
numerically that

C2(ρ) = C2(1/ρ)

ρ2
(4.26)

is satisfied. This is a non-trivial test of the correctness of our result.
(2) We have also performed the following test: we have defined the function equal to the

exact value of the specific heat CH,c(n, ρ) minus the first three terms of the expansion (4.19).
Then, we have fitted the result to several ansätze. In particular, we show in table 4 the results for
the ansatzD2/n

2 +D3/n
3 +D4/n

4 +D5/n
5. We have used the same data as for the energy fits in

section 3. The agreement between the valuesD2,D3 and the exact values (4.22)/(4.23)/(3.23)
is very good. It is also interesting to note that D5(ρ) ≈ −√

2B5(ρ), where B5(ρ) is the
coefficient obtained in a similar fit to the energy (see table 2).

(3) By inspection from table 3, the functionC2(ρ) should have a zero at a non-trivial value
of the aspect ratio ρmin between 1 and 2. We have evaluated numerically that value,

ρmin ≈ 1.335 440 86. (4.27)

By (4.26), there is another zero of C2(ρ) at ρ−1
min ≈ 0.748 816 39.

(4) In the limit ρ → ∞ the coefficients Ci tend to the following limits:

C0(∞) = 8

π

(
log

25/2

π
+ γE − π

4

)
(4.28a)

C1(∞) = 0 (4.28b)

C2(∞) = −π
9

(4.28c)

C3(∞) = 0. (4.28d)

Thus, only the coefficients associated with even powers of n−1 survive in this limit.

5. Further remarks and conclusions

The computation of the finite-size corrections to the energy and specific heat shows that, to
order n−3:

(a) All the corrections are integer powers of the quantity n−1. In particular there are no
multiplicative or additive logarithmic terms (except for the leading term in the specific
heat).

(b) In the energy density we only find odd powers of n−1. In particular, the corrections of
order n−2 and n−4 are absent from (3.21).
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(c) In the specific heat we find both even and odd powers of n−1, but the coefficients of
the corrections corresponding to odd powers of n−1 in (4.19) are proportional to the
corresponding coefficients in the energy expansion (3.21): we found that Ci(ρ) =
−√

2Ei(ρ) for i = 1, 3 (cf (4.21)/(4.23)), and the numerical test performed at the end of
sections 3 and 4 shows that the same ratio holds for the next coefficients C5/E5 ≈ −√

2.

The natural question is whether these observations are general features that hold to all orders
in n−1. In this section, we will try to answer those questions.

Let us first analyse what happens to the energy. We first note that in the expansion (3.8)
only even powers of n−1 occur. This expansion can be done to any finite order we want. The
errors from neglecting the second sum in (3.5) and from extending the sums

∑s(n)−1
r=1 to

∑∞
r=1

are at most of order O(n−(M−1)), and they can be made as small as we want by making M in
the definition of s(n) (3.6) as large as we need. This means that in the series expansions of the
quantities logPi (i = 1, . . . , 4) (3.13) only even powers of n−1 appear. Secondly, we need to
check that only even powers of n−1 occur in the expansion of logP0 (3.15). The argument is

simple: all derivatives f (k) of the function f (p) = log(sinp+
√

1 + sin2 p) are integrable over
the interval [0, π ]. This implies that the Euler–MacLaurin formula (B.4) can be applied to any
arbitrary order. As f (0) = f (π), the correction of order n−1 vanishes and only corrections
with even powers of n−1 can occur. The same conclusion applies to the expansion (3.15) and to
the ratios Ri (3.20). Thus, from formula (3.3) we immediately conclude that only odd powers
of n−1 appear in the finite-size corrections to the critical energy density. This result generalizes
point (b) above. In particular, no logarithmic corrections occur in this expansion at any order.

Remark. The authors of [22] made an argument to explain the absence of theL−2 correction in
the energy. They started with the Fortuin–Kasteleyn representation of the q-state Potts model
on a graph G (q = 2 corresponds to the Ising model) [29, 30]:

ZG(K) =
∑
G′⊆G

vNb(G
′)qNc(G

′) (5.1)

whereNb andNc are respectively the number of bonds and connected clusters of the spanning
subgraph G′ ⊆ G, and v = eK − 1. Then, they introduced the standard finite-size-scaling
ansatz for the free energy assuming there are no irrelevant operators [4]:

fG(K) = freg(K) +
1

LxLy
W(L1/ν

x (K −Kc)). (5.2)

Here G is a square lattice of size Lx × Ly , freg(K) is the regular part of the free energy, ν is
the usual critical exponent and W(x) is an analytic function at x = 0. They expanded W(x)
around x = 0 and computed the mean values of Nc and Nb at criticality (K = Kc). They
found that

〈Nc〉 = ncLxLy + AL1/ν
x + B (5.3a)

〈Nb〉 = nbLxLy + CL1/ν
x (5.3b)

with no constant correction to 〈Nb〉. The internal energy (2.7) is related linearly toNb; thus, in
the Ising model at criticality, we have Ec = A0 + A1(ρ)L

−1
x with no higher-order corrections

in L−1
x . They concluded that the L−2

x correction to the critical energy should vanish. Indeed,
this argument also implies the stronger result that there are no corrections of any kind beyond
orderL−1

x —a conclusion that is unfortunately false! So it is not clear that the ansatz (5.2) (even
if we include irrelevant operators) is enough to reproduce the right finite-size expansion of the
internal energy of the critical two-dimensional Ising model (3.21). A detailed discussion of
this point will be published elsewhere [21] (see also [14, section 3] for preliminary results).
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The analysis of the specific heat is a little more involved. Using the same procedure as for
the energy, we conclude that the fourth (∼R3/R) and the last (∼R2

4/R
2) terms of (4.1) provide

corrections with even powers of n−1. Furthermore, the sixth term of (4.1) [∼R4/(Rn)] will
give only odd powers of n−1.

Let us see now what happens to the termsQ1,i (4.2a)–(4.2d). The argument forQ1,4 (4.2d)
is quite simple: the expansion of this quantity as a power series of rπ/n will only contain
even powers of n−1. Indeed, the errors from dropping the sum

∑�n/2�
r=s(n) in the beginning of the

computation, and for extending the sum
∑s(n)−1

r=1 to
∑∞

r=1 at the end of the computation, are
both at most of order O(x−(M−1)) with the choice (3.6) for s(n). Thus, the fifth term in (4.1)
(∼∑RiQ1,i/R) will have only corrections with even powers of n−1.

Finally, let us analyse the behaviour of Q1,+ (4.2f). In the evaluation of Q(2)
1,+ we

had to apply the Euler–MacLaurin formula (B.4) to the function f (p) = sin2k−1 p with
k � 1. The derivatives of this function are always integrable over the interval [0, π ], thus
the expansion (4.5) only contains even powers of n−1. In the evaluation of Q(0)

1,+ we apply the
Euler–MacLaurin formula (B.4) to the function f (p) = 1/ sinp − 1/p + 1/(p − π). This
function and all its derivatives are integrable over the interval [0, π ]. Thus, equation (4.6) can
be generalized to

Q
(0)
1,+ = 2

π

{ n−1∑
p=1

1

p
+

1

2n
+ log

2

π
+
π

2

∞∑
k=1

B2k

2k

(
π

n

)2k

[f (2k−1)(π)− f (2k−1)(0)]

}
. (5.4)

This expansion contains in principle both even and odd powers of n−1. We now plug in the
well known result [28]

L∑
p=1

1

p
= logL + γE +

1

2L
−

∞∑
k=1

B2k

2k
L−2k (5.5)

with L = n− 1, and expand the resulting factors log(1 − 1/n), (1 − 1/n)−1 and (1 − 1/n)−2k

in powers of n−1. If we express the result as
∑

k αkn
−k , we immediately see that α1 = 0. The

expression for the coefficients of the odd powers of n−1 is given by

α2k+1 = 1

2
− 1

2k + 1
−

k∑
m=1

(
2k

2m− 1

)
B2m

2m
k � 1. (5.6)

To prove α2k+1 = 0, we can apply the general Euler–MacLaurin formula (B.1) to the function
f (x) = x2k with n = 0 and m = 1:

0 =
∫ 1

0
x2k dx − 1

2
+

k∑
m=1

B2m

(2m)!

(2k)!

(2k − 2m + 1)!
= −α2k+1. (5.7)

This implies that in the finite-size-scaling expansion of Q1,+ only even powers of n−1 occur.
The same holds for Q1,− (4.2e).

In summary, we have seen that in the finite-size-scaling expansion of the specific heat at
criticality only integer powers ofn−1 appear (except of course for the leading term (8/π) log n).
Furthermore, all contributions to the specific heat (4.1) give even powers of n−1, except for
one, namely, the sixth term in (4.1), which has the form

2
√

2

n
lim
τ→0

R4(τ, n, ρ)

R(0, n, ρ)
coth τρ. (5.8)

If we compare it to the expression for the energy (3.3) we conclude that the coefficients
associated with odd powers of n−1 in the energy and specific-heat expansions are proportional.
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In particular (cf, (2.12)/(2.13)), and recalling that E2k = 0, we obtain

Ek(ρ)

Ck(ρ)
=
{

−1/
√

2 for k odd

0 for k even.
(5.9)

This generalizes the results (4.21)/(4.23). Note in particular that the ratio Ek(ρ)/Ck(ρ) is
independent of the aspect ratio ρ.

Let us conclude with a brief discussion about the generality of the above results. It is clear
that the leading-term coefficients E0 and C00 in (2.12)/(2.13) do not depend on the boundary
conditions, as they are bulk quantities. However, the finite-size-scaling coefficientsEk(ρ) and
Ck(ρ)with k � 1 are expected to depend in general on the boundary conditions of the system.
In particular, Lu and Wu [31] have obtained the finite-size expansion of the free energy for
a critical Ising model with two different boundary conditions (namely, a Möbius strip and a
Klein bottle). They found an expansion of the form

fc(n, ρ) = f0 +
f1(ρ)

n
+
f2(ρ)

n2
+ · · · (5.10)

where the coefficients fk(ρ) with k = 1, 2 do depend explicitly on the boundary conditions.
On the other hand, the fact that the ratioEk(ρ)/Ck(ρ) is a ρ-independent number suggests

that it might be universal, i.e. independent of the details of the Hamiltonian. It would be very
interesting to investigate this possibility. A first step in this direction has been achieved by
Izmailian and Hu [32], who computed the finite-size expansion of the free energy per spin fN
and the inverse correlation length ξ−1

N for a critical Ising model on severalN ×∞ lattices with
periodic boundary conditions (namely, square, hexagonal and triangular). On each lattice they
found expansions of the form

fN − f0 =
∞∑
k=1

fk

N2k
(5.11a)

ξ−1
N =

∞∑
k=1

bk

N2k−1
(5.11b)

where the coefficients bk and fk do depend on the lattice. However, their ratio bk/fk is the
same for all three lattices and equal to bk/fk = (22k −1)/(22k−1 −1). They also computed the
corresponding expansions for a quantum spin chain belonging to the two-dimensional Ising
model universality class. They found that the ratio bk/fk takes the same value as in the Ising
case. This result supports the conjecture that this ratio is a universal quantity.
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Appendix A. Theta functions

In this appendix we gather all the definitions and properties of the Jacobi θ -functions needed in
this paper. We follow the notation of [18], which was adapted from Whittaker and Watson [33].
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We define the Jacobi θ -functions θi at z = 0 in the following way11:

θ2 ≡ θ2(0, e−πρ) = 2θ0e−πρ/4
∞∏
r=1

(1 + e−2rπρ)2 (A.1a)

θ3 ≡ θ3(0, e−πρ) = θ0

∞∏
r=1

(1 + e−(2r−1)πρ)2 (A.1b)

θ4 ≡ θ4(0, e−πρ) = θ0

∞∏
r=1

(1 − e−(2r−1)πρ)2. (A.1c)

The function θ0(ρ) is defined as

θ0 = θ0(ρ) =
∞∏
r=1

(1 − e−2πrρ) (A.2)

and it satisfies the following identity:

θ0 = eπρ/12[ 1
2θ2θ3θ4]1/3. (A.3)

These θ -functions (A.1) satisfy the Jacobi imaginary transformation

θ2(0, e−π/ρ) = ρ1/2θ4(0, e−πρ) (A.4a)

θ3(0, e−π/ρ) = ρ1/2θ3(0, e−πρ) (A.4b)

θ4(0, e−π/ρ) = ρ1/2θ2(0, e−πρ). (A.4c)

Appendix B. The Euler–MacLaurin formula

The Euler–MacLaurin formula (see e.g. [34, appendix B]) is the main tool we need to compute
asymptotic series. The general form of this formula is given by

m−1∑
k=n

f (k) =
∫ m

n

dx f (x)− 1
2 [f (m)− f (n)] +

N∑
p=1

B2p

(2p)!
[f (2p−1)(m)− f (2p−1)(n)]

+
1

(2N + 1)!

∫ m

n

dx f (2N+1)(x)B2N+1(x − �x�) (B.1)

where Bn are the Bernoulli numbers and Bn(x) are the Bernoulli polynomials defined by

Bn(x) =
n∑
k=0

(
n

k

)
Bkx

n−k. (B.2)

In this paper we are mainly interested in sums of the form

1

L

αL−1∑
n=0

f (p) (B.3)

where p = 2πn/L. The asymptotic expansion of the sum (B.3) in the limit L → ∞ with α
fixed can be obtained from (B.1):

1

L

αL−1∑
n=0

f (p) =
∫ 2πα

0

dp

2π
f (p)− 1

2L
[f (2πα)− f (0)]

11 In this particular case, θ1(0, e−πρ) = 0.
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+
1

2π

N∑
k=1

B2k

(2k)!

(
2π

L

)2k

[f (2k−1)(2πα)− f (2k−1)(0)]

+
1

(2N + 1)!

(
2π

L

)2N+1 ∫ 2πα

0

dp

2π
f (2N+1)(p)B̂2N+1(p) (B.4)

where

B̂n(p) = Bn

(
Lp

2π
−
⌊
Lp

2π

⌋)
. (B.5)

The expression (B.4) gives the asymptotic expansion of the sum (B.3) in powers of L−1 up to
order L−2N if the last integral in (B.4) is finite (i.e. if f (2N+1)(p) is integrable in the interval
[0, 2απ ]). If f (0) = f (2πα), then only even powers of L−1 occur in the expansion (B.4).
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