Exact finite-size-scaling corrections to the critical two-dimensional Ising model on a torus

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 341311
(http://iopscience.iop.org/0305-4470/34/7/307)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 02/06/2010 at 09:50

Please note that terms and conditions apply.

Exact finite-size-scaling corrections to the critical two-dimensional Ising model on a torus

Jesús Salas
Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain
E-mail: jesus@melkweg.unizar.es

Received 6 September 2000, in final form 19 January 2001

Abstract

We analyse the finite-size corrections to the energy and specific heat of the critical two-dimensional spin- $\frac{1}{2}$ Ising model on a torus. We extend the analysis of Ferdinand and Fisher to compute the correction of order L^{-3} to the energy and the corrections of order L^{-2} and L^{-3} to the specific heat. We also obtain general results on the form of the finite-size corrections to these quantities: only integer powers of L^{-1} occur, unmodified by logarithms (except of course for the leading $\log L$ term in the specific heat); and the energy expansion contains only odd powers of L^{-1}. In the specific-heat expansion any power of L^{-1} can appear, but the coefficients of the odd powers are proportional to the corresponding coefficients of the energy expansion.

PACS numbers: 0550, 0570J, 6460C

1. Introduction

It is well known that phase transitions in statistical-mechanical systems can occur only in the infinite-volume limit. In any finite system, all thermodynamic quantities (such as the magnetic susceptibility and the specific heat) are analytic functions of all parameters (such as the temperature and the magnetic field); but near a critical point they display peaks whose height increases and whose width decreases as the volume $N=L^{d}$ grows, yielding the critical singularities in the limit $L \rightarrow \infty$. For bulk experimental systems (containing $N \sim 10^{23}$ particles) the finite-size rounding of the phase transition is usually beyond the experimental resolution; but in Monte Carlo simulations ($N \lesssim 10^{6}-10^{7}$) it is visible and is often the dominant effect.

Finite-size scaling theory [1-4] provides a systematic framework for understanding finitesize effects near a critical point. The idea is simple: the only two relevant length scales are the system linear size L and the correlation length ξ_{∞} of the bulk system at the same parameters, so everything is controlled by the single ratio ξ_{∞} / L^{1}. If $L \gg \xi_{\infty}$, then finite-size effects are
${ }^{1}$ This is true only for systems below the upper critical dimension d_{c}. For Ising models with short-range interaction, $d_{\mathrm{c}}=4$.
negligible; for $L \sim \xi_{\infty}$, thermodynamic singularities are rounded and obey a scaling ansatz $\mathcal{O} \sim L^{p_{\mathcal{O}}} F_{\mathcal{O}}\left(\xi_{\infty} / L\right)$ where $p_{\mathcal{O}}$ is a critical exponent and $F_{\mathcal{O}}$ is a scaling function. Finite-size scaling is the basis of the powerful phenomenological renormalization group method (see [3] for a review); and it is an efficient tool for extrapolating finite-size data from Monte Carlo simulations so as to obtain accurate results on critical exponents, universal amplitude ratios and subleading exponents ([5-8], and references therein ${ }^{2}$). In particular, in systems with multiplicative and/or additive logarithmic corrections (such as the two-dimensional four-state Potts model [10]), a good understanding of finite-size effects is crucial for obtaining reliable estimates of the physically interesting quantities.

In finite-size-scaling theory for systems with periodic boundary conditions, three simplifying assumptions have frequently been made:
(a) The regular part of the free energy, $f_{\text {reg }}$, is independent of the lattice size L [4] (except possibly for terms that are exponentially small in L).
(b) The scaling fields associated with the temperature and magnetic field (i.e. g_{t} and g_{h}, respectively) are independent of L [11].
(c) The scaling field g_{L} associated with the lattice size is equal to L^{-1} exactly, with no corrections L^{-2}, L^{-3}, \ldots [4].

Moreover, in the nearest-neighbour spin- $\frac{1}{2}$ 2D Ising model, it has further been assumed that:
(d) There are no irrelevant operators [12,13].

Unfortunately, the combination of these four assumptions implies that the asymptotic expansions for the energy and specific heat for the Ising model at criticality terminate at order $1 / L$ (see [14]). However, the numerical results presented in [7, 14] (as well as the analytic results presented in this paper) show this to be false. The problem, therefore, is to determine which one(s) of these assumptions are invalid, and why. Assumption (c) is extremely plausible from renormalization-group considerations, at least for periodic boundary conditions; and assumption (d) has been confirmed numerically to order $\left(T-T_{\mathrm{c}}\right)^{3}$ at least as regards the bulk behaviour of the susceptibility [13]. However, both numerical [15, 16] and theoretical [17] evidence has recently emerged suggesting that irrelevant operators do contribute to the susceptibility at order $\left(T-T_{\mathrm{c}}\right)^{4}$.

In a classic paper, Ferdinand and Fisher [18] considered the energy and the specific heat of the two-dimensional Ising model on a torus of length L and aspect ratio ρ, and obtained the first two (three) terms of the large- L asymptotic expansion of the energy (specific heat) at fixed $x \equiv L\left(T-T_{\mathrm{c}}\right)$ (this is the finite-size-scaling regime) and fixed ρ^{3}. In particular, at criticality $\left(T=T_{\mathrm{c}}\right)$ they computed the finite-size corrections to both quantities to order L^{-1}. In 1999, Hu et al [22] published (without details) the correction of order L^{-3} to the energy and showed that the L^{-2} correction is absent ${ }^{4}$. In this paper we compute explicitly the following finite-size corrections:

- The correction of order L^{-3} to the energy.
- The corrections of order L^{-2} and L^{-3} to the specific heat.
${ }^{2}$ Finite-size scaling has also been successfully applied to data from transfer-matrix computations [9].
${ }^{3}$ Ferdinand and Fisher [18] also obtained the position of the maximum of the specific heat $x_{\max }(\rho)$ which depends on the torus aspect ratio ρ. Furthermore, Kleban and Akinci [19, 20] showed that an excellent approximation can be obtained by keeping only the two largest eigenvalues of the transfer matrix, and they interpreted their results in terms of domain-wall energies. This approximation is already good at $\rho=1$ and becomes exponentially better with increasing ρ. This method could surely simplify the computations presented in this paper; but here we are interested in the exact values of the finite-size-scaling corrections. These results are used as theoretical inputs in [14,21].
4 The published version of [22] contains several misprints in the crucial formula (3.23). Version 2 of this paper in the Los Alamos preprint archive cond-mat contains the correct formula.

Furthermore, we also find new insights into the general analytic structure of the finite-size corrections to this model. We show that in the critical two-dimensional Ising model:

- The finite-size corrections to the energy and specific heat are always integer powers of L^{-1}, unmodified by logarithms (except of course for the leading $\log L$ term in the specific heat).
- In the finite-size expansion of the energy, only odd integer powers of L^{-1} occur.
- In the finite-size expansion of the specific heat, any integer powers of L^{-1} can occur. However, the coefficients of the odd powers of L^{-1} in this expansion are proportional to the corresponding coefficients in the energy expansion.
These results can be compared to the general renormalization-group expression for the finitesize corrections to the energy and the specific heat [14], in which arbitrary powers of L^{-1} and terms of the type $L^{-1+p} \log L$ (where p is some real number) can occur. The implications of these results for understanding which one(s) of the assumptions (a)-(d) are invalid will be analysed elsewhere [21].

The plan of this paper is as follows: in section 2 we present our definitions and notation (generally following [18]). In sections 3 and 4 we present the computation of the next terms in the asymptotic expansions for the energy and specific heat, respectively. Finally, in section 5 we present our arguments about the type of finite-size-scaling correction that can occur in these two expansions. We have summarized in appendix A the basic definitions and properties of the θ-functions that will be needed in this paper. In appendix B we recall the Euler-MacLaurin formula.

Remark. After the completion of this paper, we learned that similar results have been independently obtained by Izmailian and Hu [23].

2. Basic definitions

Let us consider an Ising model on a torus of size $m \times n$ at zero magnetic field. The Hamiltonian is given by ${ }^{5}$

$$
\begin{equation*}
\mathcal{H}=-K \sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j} . \tag{2.1}
\end{equation*}
$$

The partition function can be written as

$$
\begin{equation*}
Z_{m n}=\sum_{\{\sigma\}} \mathrm{e}^{-\mathcal{H}}=\frac{1}{2}(2 \sinh 2 K)^{m n / 2} \sum_{i=1}^{4} Z_{i}(K, n, m) \tag{2.2}
\end{equation*}
$$

where the partial partition function Z_{1} is given by

$$
\begin{equation*}
Z_{1}(K, n, m)=\prod_{r=0}^{n-1} 2 \cosh \left(\frac{m \gamma_{2 r+1}}{2}\right) \tag{2.3}
\end{equation*}
$$

and the rest are defined analogously using the first three columns of the following table (the last two columns will be needed afterwards in (2.9)/(4.18)).

$Z_{1}:$	$2 r+1$	\cosh	\tanh	sech
$Z_{2}:$	$2 r+1$	\sinh	coth	i csch
$Z_{3}:$	$2 r$	\cosh	\tanh	sech
$Z_{4}:$	$2 r$	\sinh	coth	i csch.

[^0]The quantities $\gamma_{l}=\gamma_{l}(K, n)$ are defined by

$$
\begin{equation*}
\cosh \gamma_{l} \equiv c_{l}=\cosh 2 K \operatorname{coth} 2 K-\cos \left(\frac{l \pi}{n}\right) \tag{2.5}
\end{equation*}
$$

In particular, we have

$$
\begin{align*}
& \gamma_{0}=2 K+\log (\tanh K) \tag{2.6a}\\
& \gamma_{l}=\log \left(c_{l}+\sqrt{c_{l}^{2}-1}\right) \quad l \neq 0 \tag{2.6b}
\end{align*}
$$

The quantities γ_{l} (2.6) satisfy $\gamma_{l}=\gamma_{2 n-l}$, and γ_{l} is a monotonically increasing function of l for $0 \leqslant l \leqslant n$.

The internal energy density E and the specific heat C_{H} are given by

$$
\begin{align*}
& E(K, m, n)=-\operatorname{coth} 2 K-\frac{1}{m n}\left[\frac{\sum_{i=1}^{4} Z_{i}^{\prime}}{\sum_{i=1}^{4} Z_{i}}\right] \tag{2.7}\\
& C_{\mathrm{H}}(K, m, n)=-2 \operatorname{csch}^{2} 2 K+\frac{1}{m n}\left[\frac{\sum_{i=1}^{4} Z_{i}^{\prime \prime}}{\sum_{i=1}^{4} Z_{i}}-\left(\frac{\sum_{i=1}^{4} Z_{i}^{\prime}}{\sum_{i=1}^{4} Z_{i}}\right)^{2}\right] \tag{2.8}
\end{align*}
$$

where the primes denote derivatives with respect to the coupling constant K. In computing observables (2.7)/(2.8), the following formulae, derived from (2.3), will be useful:

$$
\begin{align*}
& \frac{Z_{1}^{\prime}}{Z_{1}}=\frac{m}{2} \sum_{r=0}^{n-1} \gamma_{2 r+1}^{\prime} \tanh \left(\frac{m \gamma_{2 r+1}}{2}\right) \tag{2.9a}\\
& \frac{Z_{1}^{\prime \prime}}{Z_{1}}=\left[\frac{m}{2} \sum_{r=0}^{n-1} \gamma_{2 r+1}^{\prime} \tanh \left(\frac{m \gamma_{2 r+1}}{2}\right)\right]^{2}+\frac{m}{2} \sum_{r=0}^{n-1} \gamma_{2 r+1}^{\prime \prime} \tanh \left(\frac{m \gamma_{2 r+1}}{2}\right) \\
& \quad+\left(\frac{m}{2}\right)^{2} \sum_{r=0}^{n-1}\left[\gamma_{2 r+1}^{\prime} \operatorname{sech}\left(\frac{m \gamma_{2 r+1}}{2}\right)\right]^{2} . \tag{2.9b}
\end{align*}
$$

The analogous ratios for $i=2,3,4$ can be obtained from (2.9a)/(2.9b) by using (2.4) (Note that the third column of (2.4) does not play any role here.) The factor i in the entry i csch of (2.4) changes the sign of the last term of (2.9b) for $Z_{2}^{\prime \prime}$ and $Z_{4}^{\prime \prime}$.

The critical point of the Ising model corresponds to the self-dual point $\sinh 2 K_{\mathrm{c}}=1$. That is

$$
\begin{equation*}
K_{\mathrm{c}}=\frac{1}{2} \log (1+\sqrt{2}) . \tag{2.10}
\end{equation*}
$$

In this paper we are concerned with the finite-size-scaling corrections to the energy and specific heat of the critical Ising model. We will express all our results in terms of the length n and the aspect ratio of the torus ρ^{6} :

$$
\begin{equation*}
\rho=\frac{m}{n} . \tag{2.11}
\end{equation*}
$$

Indeed, all our results are invariant under the transformation $n \leftrightarrow m$. Here we shall show that the energy and specific heat at criticality have asymptotic expansions of the form

$$
\begin{align*}
& -E\left(K_{\mathrm{c}}, m, n\right) \equiv-E_{\mathrm{c}}(n, \rho)=E_{0}+\sum_{k=1}^{\infty} \frac{E_{k}(\rho)}{n^{k}} \tag{2.12}\\
& C_{\mathrm{H}}\left(K_{\mathrm{c}}, n, m\right) \equiv C_{\mathrm{H}, \mathrm{c}}(n, \rho)=C_{00} \log n+C_{0}(\rho)+\sum_{k=1}^{\infty} \frac{C_{k}(\rho)}{n^{k}} . \tag{2.13}
\end{align*}
$$

[^1]The coefficients E_{0} and C_{00} can be obtained from Onsager's solution [25]; E_{1}, C_{0}, and C_{1} were computed by Ferdinand and Fisher [18] and, finally, the fact that $E_{2}=0$ and the expression for E_{3} were given (without details) in [22]. Here we shall compute explicitly the terms E_{3}, C_{2} and C_{3}, and shall show that $E_{2}=E_{4}=E_{6}=\cdots=0$.

Let us now see how γ_{l} and its derivatives behave close to the critical point (2.10). To do so, we introduce the finite-size-scaling parameter τ as in [18, equation (2.12) $]^{7}$:

$$
\begin{equation*}
\left(\frac{\tau}{n}\right)^{2}=\frac{1}{2}\left(\sinh 2 K+\frac{1}{\sinh 2 K}\right)-1 . \tag{2.14}
\end{equation*}
$$

Thus, $\tau=0$ corresponds to the critical point $K=K_{\mathrm{c}}$, and $\tau \neq 0$ fixed corresponds to the finite-size-scaling regime $n \rightarrow \infty, K \rightarrow K_{\mathrm{c}}$ with $n\left(K-K_{\mathrm{c}}\right)$ fixed. Hereafter, we will consider the behaviour of all quantities as a function of τ in the limit $\tau \rightarrow 0$. The value of γ_{0} at $\tau=0$ is zero; its behaviour close to the critical point is given by

$$
\begin{equation*}
\gamma_{0}(\tau, n)=-2\left(\frac{\tau}{n}\right)+\mathcal{O}\left[\left(\frac{\tau}{n}\right)^{3}\right] . \tag{2.15}
\end{equation*}
$$

The derivatives of γ_{0} with respect to K are non-vanishing at criticality:

$$
\begin{align*}
& \left.\gamma_{0}^{\prime}(0, n) \equiv \frac{\mathrm{d} \gamma_{0}}{\mathrm{~d} K}\right|_{T=T_{\mathrm{c}}}=4 \tag{2.16a}\\
& \left.\gamma_{0}^{\prime \prime}(0, n) \equiv \frac{\mathrm{d}^{2} \gamma_{0}}{\mathrm{~d} K^{2}}\right|_{T=T_{\mathrm{c}}}=-4 \sqrt{2} . \tag{2.16b}
\end{align*}
$$

(Note that prime continues to denote $\mathrm{d} / \mathrm{d} K$, not $\mathrm{d} / \mathrm{d} \tau$. However, the final result will be expressed in terms of τ (in the limit $\tau \rightarrow 0$), hence the notation $\gamma_{0}^{\prime}(0, n)$.) For a generic $l \neq 0$ the critical value of γ_{l} is given by

$$
\begin{equation*}
\gamma_{l}(0, n)=2 \log \left[\sqrt{1+\sin ^{2}\left(\frac{l \pi}{2 n}\right)}+\sin \left(\frac{l \pi}{2 n}\right)\right] \tag{2.17}
\end{equation*}
$$

while its derivatives with respect to K are given by

$$
\begin{align*}
\gamma_{l}^{\prime} & =\frac{c_{l}^{\prime}}{\sqrt{c_{l}^{2}-1}} \tag{2.18a}\\
\gamma_{l}^{\prime \prime} & =\frac{c_{l}^{\prime \prime}}{\sqrt{c_{l}^{2}-1}}-\frac{c_{l}\left(c_{l}^{\prime}\right)^{2}}{\left(c_{l}^{2}-1\right)^{3 / 2}} \tag{2.18b}
\end{align*}
$$

where the quantity c_{l}^{\prime} vanishes at criticality as

$$
\begin{equation*}
c_{l}^{\prime}(\tau, n)=c^{\prime}(\tau, n)=-8\left(\frac{\tau}{n}\right)+\mathcal{O}\left[\left(\frac{\tau}{n}\right)^{2}\right] \tag{2.19}
\end{equation*}
$$

and the quantity $c_{l}^{\prime \prime}$ gives a non-zero value

$$
\begin{equation*}
c_{l}^{\prime \prime}(0, n)=c^{\prime \prime}(0, n)=16 \tag{2.20}
\end{equation*}
$$

We can write the partial partition functions $Z_{i}(\operatorname{cf}(2.3) /(2.4))$ in the following form:

$$
\begin{equation*}
Z_{1}(\tau, n, \rho)=P_{1}(\tau, n, \rho) \exp \left(\frac{m}{2} \sum_{r=0}^{n-1} \gamma_{2 r+1}\right) \tag{2.21a}
\end{equation*}
$$

[^2]\[

$$
\begin{align*}
& Z_{2}(\tau, n, \rho)=P_{2}(\tau, n, \rho) \exp \left(\frac{m}{2} \sum_{r=0}^{n-1} \gamma_{2 r+1}\right) \tag{2.21b}\\
& Z_{3}(\tau, n, \rho)=P_{3}(\tau, n, \rho) \exp \left(\frac{m}{2} \sum_{r=0}^{n-1} \gamma_{2 r}\right)\left[1+\mathrm{e}^{-m \gamma_{0}}\right] \tag{2.21c}\\
& Z_{4}(\tau, n, \rho)=P_{4}(\tau, n, \rho) \exp \left(\frac{m}{2} \sum_{r=0}^{n-1} \gamma_{2 r}\right)\left[1-\mathrm{e}^{-m \gamma_{0}}\right] \tag{2.21d}
\end{align*}
$$
\]

where the quantities $P_{i}(\tau, n, \rho)$ are given by

$$
\begin{align*}
& \log P_{1}(\tau, n, \rho)=\sum_{r=0}^{n-1} \log \left(1+\mathrm{e}^{-m \gamma_{2 r+1}}\right) \tag{2.22a}\\
& \log P_{2}(\tau, n, \rho)=\sum_{r=0}^{n-1} \log \left(1-\mathrm{e}^{-m \gamma_{2 r+1}}\right) \tag{2.22b}\\
& \log P_{3}(\tau, n, \rho)=\sum_{r=1}^{n-1} \log \left(1+\mathrm{e}^{-m \gamma_{2 r}}\right) \tag{2.22c}\\
& \log P_{4}(\tau, n, \rho)=\sum_{r=1}^{n-1} \log \left(1-\mathrm{e}^{-m \gamma_{2 r} r}\right) \tag{2.22d}
\end{align*}
$$

The functions (2.22) give non-vanishing constants in the limit $\tau \rightarrow 0$ [18]:

$$
\begin{align*}
& \log P_{1}(0, n, \rho)=\frac{\theta_{3}}{\theta_{0}}+\mathcal{O}\left(n^{-2}\right) \tag{2.23a}\\
& \log P_{2}(0, n, \rho)=\frac{\theta_{4}}{\theta_{0}}+\mathcal{O}\left(n^{-2}\right) \tag{2.23b}\\
& \log P_{3}(0, n, \rho)=\frac{1}{2} \frac{\theta_{2}}{\theta_{0}} \mathrm{e}^{\pi \rho / 4}+\mathcal{O}\left(n^{-2}\right) \tag{2.23c}\\
& \log P_{4}(0, n, \rho)=\theta_{0}^{2}+\mathcal{O}\left(n^{-2}\right) \tag{2.23d}
\end{align*}
$$

where the functions θ_{i} with $i=2,3,4$ are the usual θ-functions (see appendix A), and θ_{0} is defined in (A.2).

Finally, we introduce the ratios

$$
\begin{equation*}
R_{i}(\tau, n, \rho)=\frac{Z_{i}(\tau, n, \rho)}{Z_{1}(\tau, n, \rho)} \tag{2.24}
\end{equation*}
$$

Thus, from (2.21) we obtain

$$
\begin{align*}
& R_{1}(\tau, n, \rho)=1 \tag{2.25a}\\
& R_{2}(\tau, n, \rho)=\frac{P_{2}(\tau, n, \rho)}{P_{1}(\tau, n, \rho)} \tag{2.25b}\\
& R_{3}(\tau, n, \rho)=2 \cosh \left(\frac{m \gamma_{0}}{2}\right) P_{0}(\tau, n, \rho) \frac{P_{3}(\tau, n, \rho)}{P_{1}(\tau, n, \rho)} \tag{2.25c}\\
& R_{4}(\tau, n, \rho)=2 \sinh \left(\frac{m \gamma_{0}}{2}\right) P_{0}(\tau, n, \rho) \frac{P_{4}(\tau, n, \rho)}{P_{1}(\tau, n, \rho)} \tag{2.25d}
\end{align*}
$$

where $P_{0}(\tau, n, \rho)$ is defined as

$$
\begin{equation*}
\log P_{0}(\tau, n, \rho)=\frac{m}{2}\left[\sum_{r=1}^{n-1} \gamma_{2 r}-\sum_{r=0}^{n-1} \gamma_{2 r+1}\right] . \tag{2.26}
\end{equation*}
$$

The sum of the four ratios is denoted by R

$$
\begin{equation*}
R(\tau, n, \rho)=\sum_{i=1}^{4} R_{i}(\tau, n, \rho) \tag{2.27}
\end{equation*}
$$

The ratios R_{2} and R_{3} have a non-vanishing value at the critical point [18]

$$
\begin{align*}
& R_{2}(0, n, \rho)=\frac{\theta_{4}}{\theta_{3}}+\mathcal{O}\left(n^{-2}\right) \tag{2.28a}\\
& R_{3}(0, n, \rho)=\frac{\theta_{2}}{\theta_{3}}+\mathcal{O}\left(n^{-2}\right) \tag{2.28b}
\end{align*}
$$

while R_{4} vanishes at $K=K_{\mathrm{c}}$:

$$
\begin{equation*}
R_{4}(\tau, n, \rho)=-\sinh (\tau \rho)\left[\theta_{2} \theta_{4}+\mathcal{O}\left(n^{-2}\right)\right]+\mathcal{O}\left(\tau^{2}\right) \tag{2.29}
\end{equation*}
$$

The sum of the four ratios at criticality is a non-zero constant

$$
\begin{equation*}
R(0, n, \rho)=\frac{\theta_{2}+\theta_{3}+\theta_{4}}{\theta_{3}}+\mathcal{O}\left(n^{-2}\right) \tag{2.30}
\end{equation*}
$$

The function P_{0} has also a non-vanishing limit at criticality:

$$
\begin{equation*}
P_{0}(0, n, \rho)=\mathrm{e}^{-\pi \rho / 4}\left[1+\mathcal{O}\left(n^{-2}\right)\right] . \tag{2.31}
\end{equation*}
$$

3. Finite-size-scaling corrections to the internal energy

The internal energy at the critical point E_{c} is equal to

$$
\begin{equation*}
-E_{\mathrm{c}}(n, \rho)=-E\left(K_{\mathrm{c}}, n, \rho\right)=\sqrt{2}+\lim _{\tau \rightarrow 0} \frac{1}{m n R} \sum_{i=1}^{4} \frac{Z_{i}^{\prime}}{Z_{i}} R_{i} \tag{3.1}
\end{equation*}
$$

The terms Z_{i}^{\prime} / Z_{i} with $i=1,2$ vanish trivially as all the $\gamma_{2 r+1}^{\prime}$ vanish. The term Z_{3}^{\prime} / Z_{3} does not vanish due to the contribution of γ_{0}^{\prime}; but its total contribution is also zero as it is multiplied by $\tanh \left(m \gamma_{0} / 2\right)$, which vanishes at criticality. The only non-vanishing contribution comes from $i=4$:

$$
\begin{equation*}
\frac{Z_{4}^{\prime}}{Z_{4}}=\frac{m}{2} \gamma_{0}^{\prime} \operatorname{coth}\left(\frac{m \gamma_{0}}{2}\right) \sim-2 m \operatorname{coth}(\rho \tau) \quad \text { as } \quad \tau \rightarrow 0 \tag{3.2}
\end{equation*}
$$

So we obtain the formula

$$
\begin{equation*}
-E_{\mathrm{c}}(n, \rho)=\sqrt{2}-\frac{2}{n} \lim _{\tau \rightarrow 0} \frac{R_{4}(\tau, n, \rho)}{R(0, n, \rho)} \operatorname{coth}(\rho \tau) \tag{3.3}
\end{equation*}
$$

where $R(0, n, \rho)$ is given by (2.30). Note that, by (2.29), $R_{4}(\tau, n, \rho) \sim \tau$ as $\tau \rightarrow 0$, so $R_{4}(\tau, n, \rho) \operatorname{coth}(\rho \tau)$ gives rise to a non-zero result in this limit.

The goal of this section is to extend the Ferdinand-Fisher asymptotic expansion [18] to order n^{-4}. Let us first consider the quantity $\log P_{4}$ at criticality:

$$
\begin{equation*}
\log P_{4}(0, n, \rho)=\sum_{r=1}^{n-1} \log \left(1-\mathrm{e}^{-m \gamma_{2 r}}\right)=-2 \sum_{p=1}^{\infty} \frac{1}{p} \sum_{r=1}^{\left\lfloor\frac{n}{2}\right\rfloor} \mathrm{e}^{-m p \gamma_{2 r}} \tag{3.4}
\end{equation*}
$$

where $\lfloor x\rfloor$ is the largest integer $\leqslant x$. The sum over r can be split into two parts:

$$
\begin{equation*}
\sum_{r=1}^{\left\lfloor\frac{n}{2}\right\rfloor}=\sum_{r=1}^{s(n)-1}+\sum_{r=s(n)}^{\left\lfloor\frac{n}{2}\right\rfloor} \tag{3.5}
\end{equation*}
$$

where $s(n)$ will be chosen afterwards. We can drop the second sum in (3.5), as it gives a contribution of order $\sim n\left|\log \left[1-\exp \left(-m \gamma_{2 s}\right)\right]\right| \sim n \exp [-2 \pi \rho s(n)]$. Instead of the choice $s(n)=(3 / 2 \pi \rho) \log n$ made by Ferdinand and Fisher, we shall use the choice

$$
\begin{equation*}
s(n)=\frac{M}{2 \pi \rho} \log n \tag{3.6}
\end{equation*}
$$

with M an arbitrary positive integer, to ensure that the total contribution of the second sum in (3.5) is as small as we want (namely, $\sim n^{-(M-1)}$).

We can use the following expression for $\gamma_{2 r}$ at criticality [18]:

$$
\begin{equation*}
\frac{1}{2} \gamma_{2 r}(0, n)=\log \left[\sin \left(\frac{r \pi}{n}\right)+\sqrt{1+\sin ^{2}\left(\frac{r \pi}{n}\right)}\right] \tag{3.7}
\end{equation*}
$$

to obtain an asymptotic series of $m \gamma_{2 r}$ in terms of n^{-1} :

$$
\begin{equation*}
m \gamma_{2 r}(0, n)=2 \pi \rho r-\frac{2 \rho \pi^{3}}{3} \frac{r^{3}}{n^{2}}+\frac{\rho \pi^{5}}{3} \frac{r^{5}}{n^{4}}+\mathcal{O}\left(n^{-6}\right) \tag{3.8}
\end{equation*}
$$

We should recall that the choice of $s(n)(3.6)$ for any integer M guarantees that the ratio r / n is a small quantity for $0 \leqslant r \leqslant s(n)$ (as $r / n \leqslant s(n) / n \ll 1$ if n is large enough).

Remark. It is interesting to note that only even powers of n^{-1} occur in the expansion (3.8).
Plugging the expansion (3.8) into equation (3.4) we obtain
$\log P_{4}(0, n, \rho)=-2 \sum_{p=1}^{\infty} \frac{1}{p} \sum_{r=1}^{s(n)-1} \mathrm{e}^{-2 \pi r p \rho}-\frac{4 \pi^{3} \rho}{3} \sum_{p=1}^{\infty} \sum_{r=1}^{s(n)-1} \frac{r^{3}}{n^{2}} \mathrm{e}^{-2 \pi r p \rho}+\mathcal{O}\left(n^{-4}\right)$.
We can extend the sums $\sum_{r=1}^{s(n)-1}$ to $\sum_{r=1}^{\infty}$ in (3.9) by introducing an error of order n^{-M}. The second term of the rhs of (3.9) can be expressed in terms of

$$
\begin{equation*}
\sum_{r=1}^{\infty} r^{3} \mathrm{e}^{-2 \pi r p \rho}=\frac{1}{4}\left[\frac{1}{\sinh ^{2}(\pi p \rho)}+\frac{3}{2} \frac{1}{\sinh ^{4}(\pi p \rho)}\right] \tag{3.10}
\end{equation*}
$$

Finally, we can write $P_{4}(n, \rho)$ in the following form:

$$
\begin{equation*}
P_{4}(0, n, \rho)=\theta_{0}^{2}\left[1-\frac{1}{n^{2}} \frac{p_{1}(\rho)}{2}+\mathcal{O}\left(n^{-4}\right)\right] \tag{3.11}
\end{equation*}
$$

which improves $(2.23 d)$. The function $p_{1}(\rho)$ is given by

$$
\begin{equation*}
p_{1}(\rho)=\frac{2 \pi^{3} \rho}{3} \sum_{m=1}^{\infty}\left[\frac{1}{\sinh ^{2}(m \pi \rho)}+\frac{3}{2} \frac{1}{\sinh ^{4}(m \pi \rho)}\right] . \tag{3.12}
\end{equation*}
$$

Using similar methods one can obtain the improved version of (2.23):

$$
\begin{align*}
& P_{1}(0, n, \rho)=\frac{\theta_{3}}{\theta_{0}}\left[1-\frac{1}{n^{2}}\left(\tilde{p}_{2}-\frac{\tilde{p}_{1}}{2}\right)+\mathcal{O}\left(n^{-4}\right)\right] \tag{3.13a}\\
& P_{2}(0, n, \rho)=\frac{\theta_{4}}{\theta_{0}}\left[1+\frac{1}{n^{2}}\left(\frac{p_{1}}{2}-p_{2}\right)+\mathcal{O}\left(n^{-4}\right)\right] \tag{3.13b}\\
& P_{3}(0, n, \rho)=\frac{1}{2} \frac{\theta_{2}}{\theta_{0}} \mathrm{e}^{\pi \rho / 4}\left[1+\frac{1}{n^{2}} \frac{\tilde{p}_{1}}{2}+\mathcal{O}\left(n^{-4}\right)\right] \tag{3.13c}
\end{align*}
$$

where p_{2}, \tilde{p}_{1} and \tilde{p}_{2} are defined by

$$
\begin{align*}
& \tilde{p}_{1}(\rho)=\frac{2 \pi^{3} \rho}{3} \sum_{m=1}^{\infty}(-1)^{m+1}\left[\frac{1}{\sinh ^{2}(m \pi \rho)}+\frac{3}{2} \frac{1}{\sinh ^{4}(m \pi \rho)}\right] \tag{3.14a}\\
& p_{2}(\rho)=\frac{\pi^{3} \rho}{24} \sum_{m=1}^{\infty}\left[\frac{1}{\sinh ^{2}(m \pi \rho / 2)}+\frac{3}{2} \frac{1}{\sinh ^{4}(m \pi \rho / 2)}\right] \tag{3.14b}\\
& \tilde{p}_{2}(\rho)=\frac{\pi^{3} \rho}{24} \sum_{m=1}^{\infty}(-1)^{m+1}\left[\frac{1}{\sinh ^{2}(m \pi \rho / 2)}+\frac{3}{2} \frac{1}{\sinh ^{4}(m \pi \rho / 2)}\right] \tag{3.14c}
\end{align*}
$$

Finally, we have to improve the expression of $\log P_{0}(2.31)$. Let us first consider the sum

$$
\begin{equation*}
\frac{m}{2} \sum_{r=1}^{n-1} \gamma_{2 r}(0, n)=m \sum_{r=0}^{n-1} \log \left[\sin \left(\frac{r \pi}{n}\right)+\sqrt{1+\sin ^{2}\left(\frac{r \pi}{n}\right)}\right] \tag{3.15}
\end{equation*}
$$

We can apply the Euler-MacLaurin formula (B.4) to the function $f(p)=\log (\sin p+$ $\sqrt{1+\sin ^{2} p}$) with $L=2 n$ and $\alpha=1 / 2$. The result is ${ }^{8}$

$$
\begin{equation*}
\frac{m}{2} \sum_{r=1}^{n-1} \gamma_{2 r}(0, n)=\frac{2 m n}{\pi} G-\frac{\pi \rho}{6}-\frac{\pi^{3} \rho}{180} \frac{1}{n^{2}}+\mathcal{O}\left(n^{-4}\right) \tag{3.16}
\end{equation*}
$$

where $G \approx 0.915965594177219$ is Catalan's constant. Using similar methods we obtain the other sum appearing in $(2.31)^{9}$:

$$
\begin{equation*}
\frac{m}{2} \sum_{r=0}^{n-1} \gamma_{2 r+1}(0, n)=\frac{2 m n}{\pi} G-\frac{\pi \rho}{12}-\frac{7 \pi^{3} \rho}{1440} \frac{1}{n^{2}}+\mathcal{O}\left(n^{-4}\right) \tag{3.17}
\end{equation*}
$$

Putting (3.16) and (3.17) together we obtain the improved version of (2.31)

$$
\begin{equation*}
P_{0}(0, n, \rho)=\mathrm{e}^{-\pi \rho / 4}\left[1-\frac{p_{3}(\rho)}{n^{2}}+\mathcal{O}\left(n^{-4}\right)\right] \tag{3.18}
\end{equation*}
$$

where $p_{3}(\rho)$ is defined as

$$
\begin{equation*}
p_{3}(\rho)=\frac{\pi^{3}}{96} \rho . \tag{3.19}
\end{equation*}
$$

Improved expressions for the ratios $R_{i}(\tau=0, n, \rho)$ are easily obtained from equations (3.11)/(3.13)
$R_{2}(0, n, \rho)=\frac{\theta_{4}}{\theta_{3}}\left[1-\frac{1}{n^{2}}\left(p_{2}-\frac{p_{1}}{2}+\tilde{p}_{2}-\frac{\tilde{p}_{1}}{2}\right)+\mathcal{O}\left(n^{-4}\right)\right]$
$R_{3}(0, n, \rho)=\frac{\theta_{2}}{\theta_{3}}\left[1+\frac{1}{n^{2}}\left(\tilde{p}_{1}-\tilde{p}_{2}-p_{3}\right)+\mathcal{O}\left(n^{-4}\right)\right]$
$R_{4}(0, n, \rho)=-\sinh (\rho \tau) \theta_{2} \theta_{4}\left[1-\frac{1}{n^{2}}\left(\frac{p_{1}}{2}+\tilde{p}_{2}-\frac{\tilde{p}_{1}}{2}+p_{3}\right)+\mathcal{O}\left(n^{-4}\right)\right]$.
Plugging the formulae (3.20) into the expression for the critical energy density (3.1) we obtain

$$
\begin{equation*}
-E_{\mathrm{c}}(n, \rho)=\sqrt{2}+\frac{E_{1}(\rho)}{n}+\frac{E_{3}(\rho)}{n^{3}}+\mathcal{O}\left(\frac{1}{n^{5}}\right) \tag{3.21}
\end{equation*}
$$

[^3]Table 1. Values of the coefficient $E_{3}(\rho)$ from (3.23) for several values of the torus aspect ratio ρ.

ρ	$E_{3}(\rho)$
1	-0.206683145336864
2	-0.184202899115749
3	-0.153247694215529
4	-0.102599506933675
5	-0.061201301359728
6	-0.034200082347112
7	-0.018369506074164
8	-0.009614465215356
9	-0.004941568941314
10	-0.002505707497764
15	-0.000074110828658
20	-0.000001946957522
∞	0

where $E_{1}(\rho)$ [18] and $E_{3}(\rho)$ are given by the expressions

$$
\begin{align*}
E_{1}(\rho)= & \frac{2 \theta_{2} \theta_{3} \theta_{4}}{\theta_{2}+\theta_{3}+\theta_{4}} \tag{3.22}\\
E_{3}(\rho)= & -\frac{2 \theta_{2} \theta_{3} \theta_{4}}{\left(\theta_{2}+\theta_{3}+\theta_{4}\right)^{2}}\left\{p_{1}(\rho)\left(\theta_{4}+\frac{\theta_{2}+\theta_{3}}{2}\right)-p_{2}(\rho) \theta_{4}\right. \\
& \left.\quad+\tilde{p}_{1}(\rho)\left(\frac{\theta_{2}-\theta_{3}}{2}\right)+\tilde{p}_{2}(\rho) \theta_{3}+p_{3}(\rho)\left(\theta_{3}+\theta_{4}\right)\right\} . \tag{3.23}
\end{align*}
$$

The numerical values of the function $E_{3}(\rho)$ are given in table 1.
Remarks. (1) After the completion of this work, Professor Izmailian informed us that the correct expression for the coefficient $E_{3}(\rho)$ had been published in the revised version of [22] (which can be found in the Los Alamos preprint archive cond-mat). Their expression is surprisingly simple,

$$
\begin{equation*}
E_{3}(\rho)=-\frac{\pi^{3} \rho}{48} \frac{\theta_{2} \theta_{3} \theta_{4}}{\left(\theta_{2}+\theta_{3}+\theta_{4}\right)^{2}}\left[\theta_{2}^{9}+\theta_{3}^{9}+\theta_{4}^{9}\right] \tag{3.24}
\end{equation*}
$$

Indeed, the numerical value of (3.24) coincides with our result (3.23). It would be interesting to find the analytic identities proving the equivalence of (3.23) and (3.24).
(2) Let us check that (3.23) has the correct behaviour under $m \leftrightarrow n(\rho \leftrightarrow 1 / \rho)$. Indeed, the (trivial) fact that $E_{\mathrm{c}}(n, m)=E_{\mathrm{c}}(m, n)$ implies that we should have

$$
\begin{align*}
& E_{1}(\rho)=\frac{E_{1}(1 / \rho)}{\rho} \tag{3.25a}\\
& E_{3}(\rho)=\frac{E_{3}(1 / \rho)}{\rho^{3}} \tag{3.25b}
\end{align*}
$$

The first equation (3.25a) can be easily proved by using Jacobi's imaginary transformation of the θ-functions (A.4). Using these transformations one can easily show that the second equation (3.25) holds for (3.24). We have also verified numerically that (3.25) holds for our result (3.23) to high accuracy using MATHEMATICA.
(3) There is another simple way to test our results: We can first compute the exact value of the critical energy density $E_{\mathrm{c}}(n, \rho)$ for several values of n and a fixed value of ρ by using $(2.7) /(2.3) /(2.4)$. Then, we subtract the first two terms of the expansion (3.21) and fit

Table 2. Fits of the function $-E_{\mathrm{c}}(n, \rho)-\sqrt{2}-E_{1}(\rho) / n(\operatorname{cf}(3.22))$ to the ansatz $B_{3} n^{-3}+B_{5} n^{-5}+$ $B_{7} n^{-7}$ for several values of the torus aspect ratio ρ.

| $\rho=1$ | $\rho=2$ | $\rho=3$ |
| :--- | :--- | :--- | :--- |
| $B_{3}-0.2066831453369$ | -0.1842028991157 | -0.1532476942155 |
| $B_{5}-0.73018231235$ | -0.416996817 | -0.316738073 |
| $B_{7}-4.9362$ | -3.405 | -2.693 |

the resulting function to the ansatz $B_{3} n^{-3}+B_{5} n^{-5}+B_{7} n^{-7}$. In table 2 we show the numerical results for such fits with $\rho=1,2$ and 3 . For $\rho=1$ we have used in the fits 1309 different values between $n=16$ and 4096. For $\rho=2,3$ we have used ten different values corresponding to $n=2^{p}, p=2, \ldots, 11$ (that is why our estimates are more accurate for $\rho=1$ than for $\rho=2,3$). We find an excellent agreement among the numerical estimates for B_{3} and the exact values of E_{3} quoted in table 1. The value of B_{5} for $\rho=1$ also agrees well with the value ≈-0.7301823 obtained by Izmailian [27] using analytic means.
(4) In the limit $\rho \rightarrow \infty$ of an infinitely long torus (i.e. a cylinder) we have

$$
\begin{equation*}
E_{1}(\infty)=E_{3}(\infty)=0 \tag{3.26}
\end{equation*}
$$

as $\lim _{\rho \rightarrow \infty} \rho \theta_{2}=0$, and $\lim _{\rho \rightarrow \infty} \theta_{3}=\lim _{\rho \rightarrow \infty} \theta_{4}=1(\operatorname{cf}(\mathrm{~A} .1))$.

4. Finite-size-scaling corrections to the specific heat

The goal of this section is to extend the asymptotic series of Ferdinand and Fisher [18] for the specific heat to order n^{-3}. Let us start with the definition (2.8) and see which terms contribute to the critical value of C_{H}. The first term in (2.8) is just a constant $(=-2)$; while the third term is quite similar to that already obtained for the energy density (3.3) $\left[=-4 \rho R^{-2} R_{4}^{2} \operatorname{coth}^{2}(\tau \rho)\right]$. The most involved term is the second one. Using the analysis of Ferdinand and Fisher, we can obtain the final expression for the critical specific heat $C_{\mathrm{H}, \mathrm{c}}(n, \rho)=C_{\mathrm{H}}\left(K_{\mathrm{c}}, n, \rho\right)$:

$$
\begin{align*}
C_{\mathrm{H}, \mathrm{c}}(n, \rho)= & -2+4 Q_{1,-}-\frac{4 R_{3}(0, n, \rho)}{R(0, n, \rho)}\left[Q_{1,+}-Q_{1,-}\right]+4 \rho \frac{R_{3}(0, n, \rho)}{R(0, n, \rho)} \\
& -\frac{4}{R(0, n, \rho)} \sum_{i=1}^{3} R_{i}(0, n, \rho) Q_{1, i}+\frac{2 \sqrt{2}}{n} \lim _{\tau \rightarrow 0} \frac{R_{4}(\tau, n, \rho)}{R(0, n, \rho)} \operatorname{coth} \tau \rho \\
& -4 \rho \lim _{\tau \rightarrow 0}\left(\frac{R_{4}(\tau, n, \rho)}{R(0, n, \rho)} \operatorname{coth} \tau \rho\right)^{2} \tag{4.1}
\end{align*}
$$

where the $Q_{1, \pm}$ and $Q_{1, i}$ are those defined in [18] evaluated at $\tau=0$:

$$
\begin{align*}
& Q_{1,1}(n, \rho)=\frac{1}{n} \sum_{r=0}^{n-1} \frac{1-\tanh \left(\frac{m \gamma_{2 r+1}}{2}\right)}{\sin \left(\frac{(r+1 / 2) \pi}{n}\right)\left[1+\sin ^{2}\left(\frac{(r+1 / 2) \pi}{n}\right)\right]^{1 / 2}} \tag{4.2a}\\
& Q_{1,2}(n, \rho)=\frac{1}{n} \sum_{r=0}^{n-1} \frac{1-\operatorname{coth}\left(\frac{m \gamma_{2 r+1}}{2}\right)}{\sin \left(\frac{(r+1 / 2) \pi}{n}\right)\left[1+\sin ^{2}\left(\frac{(r+1 / 2) \pi}{n}\right)\right]^{1 / 2}} \tag{4.2b}\\
& Q_{1,3}(n, \rho)=\frac{1}{n} \sum_{r=1}^{n-1} \frac{1-\tanh \left(\frac{m \gamma_{2 r}}{2}\right)}{\sin \left(\frac{r \pi}{n}\right)\left[1+\sin ^{2}\left(\frac{r \pi}{n}\right)\right]^{1 / 2}} \tag{4.2c}\\
& Q_{1,4}(n, \rho)=\frac{1}{n} \sum_{r=1}^{n-1} \frac{1-\operatorname{coth}\left(\frac{m \gamma_{2 r}}{2}\right)}{\sin \left(\frac{r \pi}{n}\right)\left[1+\sin ^{2}\left(\frac{r \pi}{n}\right)\right]^{1 / 2}} \tag{4.2d}
\end{align*}
$$

$$
\begin{align*}
& Q_{1,-}(n, \rho)=\frac{1}{n} \sum_{r=0}^{n-1} \frac{1}{\sin \left(\frac{(r+1 / 2) \pi}{n}\right)\left[1+\sin ^{2}\left(\frac{(r+1 / 2) \pi}{n}\right)\right]^{1 / 2}} \tag{4.2e}\\
& Q_{1,+}(n, \rho)=\frac{1}{n} \sum_{r=1}^{n-1} \frac{1}{\sin \left(\frac{r \pi}{n}\right)\left[1+\sin ^{2}\left(\frac{r \pi}{n}\right)\right]^{1 / 2}} \tag{4.2f}
\end{align*}
$$

The terms with the factors $R_{i} / R(i=3,4)$ can be obtained easily using the results of section 3. Let us first consider the quantity $Q_{1,+}(n, \rho)(4.2 f)$. The first step consists in expanding the factor $\left[1+\sin ^{2}(r \pi / n)\right]^{-1 / 2}$ in equation (4.2f) in power series of $\sin (r \pi / n)$:

$$
\begin{align*}
Q_{1,+} & =\frac{1}{n} \sum_{r=1}^{n-1} \frac{1}{\sin \left(\frac{r \pi}{n}\right)}+\frac{1}{n} \sum_{r=1}^{n-1} \sum_{k=1}^{\infty}\binom{-1 / 2}{k} \sin ^{2 k-1}\left(\frac{r \pi}{n}\right) \tag{4.3}\\
& \equiv Q_{1,+}^{(1)}+Q_{1,+}^{(2)} . \tag{4.4}
\end{align*}
$$

The computation of $Q_{1,+}^{(2)}$ is done by applying the Euler-MacLaurin formula (B.4) to the function $f(p)=\sin ^{2 k-1}(p)$ with $L=2 n$ and $\alpha=1 / 2$. The result is

$$
\begin{equation*}
Q_{1,+}^{(2)}(n, \rho)=-\frac{\log 2}{\pi}+\frac{\pi}{12} \frac{1}{n^{2}}+\mathcal{O}\left(n^{-4}\right) \tag{4.5}
\end{equation*}
$$

The computation of the divergent part $Q_{1,+}^{(1)}$ is a little more involved. The idea is to apply the Euler-MacLaurin formula (B.4) to the function $f(p)=\sin ^{-1}(p)-1 / p+1 /(p-\pi)$ with $L=2 n$ and $\alpha=1 / 2$:

$$
\begin{gather*}
\frac{1}{n} \sum_{r=0}^{n-1}\left[\sin ^{-1}\left(\frac{r \pi}{n}\right)-\frac{n}{r \pi}+\frac{n}{\pi(r-n)}\right]=\frac{2}{\pi} \log \frac{2}{\pi}+\frac{\pi}{6 n^{2}}\left(\frac{1}{\pi^{2}}-\frac{1}{6}\right)+\mathcal{O}\left(n^{-4}\right) \\
=Q_{1,+}^{(1)}-\frac{2}{\pi} \sum_{r=1}^{n-1} \frac{1}{r}-\frac{1}{\pi n} \tag{4.6}
\end{gather*}
$$

Using the well known asymptotic expansion [28] (see also (5.5))

$$
\begin{equation*}
\sum_{r=1}^{L} \frac{1}{r}=\log L+\gamma_{E}+\frac{1}{2 L}-\frac{1}{12 L^{2}}+\mathcal{O}\left(L^{-4}\right) \tag{4.7}
\end{equation*}
$$

(where $\gamma_{E} \approx 0.5772156649$ is the Euler constant) we finally obtain

$$
\begin{equation*}
Q_{1,+}^{(1)}(n, \rho)=\frac{2}{\pi}\left[\log n+\gamma_{E}+\log \frac{2}{\pi}-\frac{\pi^{2}}{72 n^{2}}+\mathcal{O}\left(n^{-4}\right)\right] . \tag{4.8}
\end{equation*}
$$

Putting together (4.5)/(4.8) we arrive at the final result

$$
\begin{equation*}
Q_{1,+}(n, \rho)=\frac{2}{\pi}\left[\log n+\gamma_{E}+\log \frac{2^{1 / 2}}{\pi}+\frac{\pi^{2}}{36 n^{2}}+\mathcal{O}\left(n^{-4}\right)\right] . \tag{4.9}
\end{equation*}
$$

Using similar methods we obtain ${ }^{10}$

$$
\begin{equation*}
Q_{1,-}(n, \rho)=\frac{2}{\pi}\left[\log n+\gamma_{E}+\log \frac{2^{5 / 2}}{\pi}-\frac{\pi^{2}}{72 n^{2}}+\mathcal{O}\left(n^{-4}\right)\right] \tag{4.10}
\end{equation*}
$$

The last part consists in evaluation of the $Q_{1, i}$ (with $i=1,2,3$) in (4.2). For brevity we will perform explicitly the simplest case $Q_{1,4}(n, \rho)(4.2 d)$. The first step is to expand the term $1-\operatorname{coth}\left(m \gamma_{2 r} / 2\right)$ as a power series in $\exp \left(-m \gamma_{2 r}\right)$

$$
\begin{equation*}
Q_{1,4}(n, \rho)=\frac{2}{n} \sum_{r=1}^{\left\lfloor\frac{n}{2}\right\rfloor} \sum_{p=1}^{\infty} \frac{\mathrm{e}^{-m p \gamma_{2 r}}}{\sin \left(\frac{r \pi}{n}\right) \sqrt{1+\sin ^{2}\left(\frac{r \pi}{n}\right)}} \tag{4.11}
\end{equation*}
$$

[^4]Then we split the sum over r as in (3.5). The term including the sum $\sum_{r=s(n)}^{[n / 2]}$ gives a total contribution of order $n^{-(M-1)}$ with the choice (3.6) for $s(n)$. The second step is to plug into (4.11) the expansion (3.8) for $m \gamma_{2 r}$

$$
\begin{align*}
& Q_{1,4}=-\frac{4}{n} \sum_{p=1}^{\infty} \\
& \sum_{r=1}^{s-1} \frac{\mathrm{e}^{-2 \pi r p \rho}}{\sin \left(\frac{r \pi}{n}\right) \sqrt{1+\sin ^{2}\left(\frac{r \pi}{n}\right)}} \tag{4.12a}\\
& \quad-\frac{8 \pi^{3} \rho}{3 n^{3}} \sum_{p=1}^{\infty} p \sum_{r=1}^{s-1} r^{3} \frac{\mathrm{e}^{-2 \pi r p \rho}}{\sin \left(\frac{r \pi}{n}\right) \sqrt{1+\sin ^{2}\left(\frac{r \pi}{n}\right)}}+\mathcal{O}\left(n^{-4}\right) \tag{4.12b}\\
& \equiv Q_{1,4}^{(a)}+Q_{1,4}^{(b)} .
\end{align*}
$$

The computation of $Q_{1,4}^{(b)}$ is quite easy. We expand the factors $\sin (r \pi / n)$ in powers of $r \pi / n$:

$$
\begin{equation*}
Q_{1,4}^{(b)}=-\frac{8 \pi^{2} \rho}{3 n^{2}} \sum_{p=1}^{\infty} p \sum_{r=1}^{s(n)-1} r^{2} \mathrm{e}^{-2 \pi r p \rho}+\mathcal{O}\left(n^{-4}\right) \tag{4.13}
\end{equation*}
$$

Then we can extend the sum $\sum_{r=1}^{s(n)-1}$ to $\sum_{r=1}^{\infty}$ at an error of order $n^{-(M+2)} \log ^{2} n$. Using the fact that

$$
\begin{equation*}
\sum_{p=1}^{\infty} p \mathrm{e}^{-2 \pi r p \rho}=\frac{\mathrm{e}^{-2 \pi r \rho}}{\left(1-\mathrm{e}^{-2 \pi r \rho}\right)^{2}}=\frac{1}{4 \sinh ^{2}(\pi r \rho)} \tag{4.14}
\end{equation*}
$$

we have that

$$
\begin{equation*}
Q_{1,4}^{(b)}=-\frac{2 \pi^{2} \rho}{3 n^{2}} \sum_{p=1}^{\infty} \frac{r^{2}}{\sinh ^{2}(\pi r \rho)} \tag{4.15}
\end{equation*}
$$

The computation of $Q_{1,4}^{(a)}$ follows the same steps:

$$
\begin{equation*}
Q_{1,4}^{(a)}=-\frac{4}{\pi} \sum_{p=1}^{\infty} p \sum_{r=1}^{\infty} \frac{1}{r} \mathrm{e}^{-2 \pi r p \rho}+\frac{4 \pi}{3 n^{2}} \sum_{p=1}^{\infty} p \sum_{r=1}^{\infty} r \mathrm{e}^{-2 \pi r p \rho}+\mathcal{O}\left(n^{-4}\right) \tag{4.16}
\end{equation*}
$$

In this case the error introduced by extending the sum $\sum_{r=1}^{s(n)-1}$ to $\sum_{r=1}^{\infty}$ is of order n^{-M}. Using (4.14) we find that
$Q_{1,4}^{(a)}=\frac{2}{\pi} \sum_{r=1}^{\infty} \frac{1}{r}[1-\operatorname{coth}(\pi r \rho)]-\frac{2 \pi}{3 n^{2}} \sum_{r=1}^{\infty} r[1-\operatorname{coth}(\pi r \rho)]+\mathcal{O}\left(n^{-4}\right)$.
Thus, we write the final result as

$$
\begin{align*}
& Q_{1,4}(n, \rho)=Q_{1,4}^{(0)}(\rho)+\frac{Q_{1,4}^{(2)}(\rho)}{n^{2}}+\mathcal{O}\left(n^{-4}\right) \tag{4.18a}\\
& Q_{1,4}^{(0)}(\rho)=\frac{2}{\pi} \sum_{r=1}^{\infty} \frac{1}{r}[1-\operatorname{coth}(\pi r \rho)] \tag{4.18b}\\
& Q_{1,4}^{(2)}(\rho)=-\frac{2 \pi}{3}\left\{\sum_{r=1}^{\infty} r[1-\operatorname{coth}(\pi r \rho)]+\pi \rho \sum_{r=1}^{\infty} r^{2}[\mathrm{i} \operatorname{csch}(\pi r \rho)]^{2}\right\} \tag{4.18c}
\end{align*}
$$

The other three quantities $Q_{1, i}(4.2 a)-(4.2 c)$ can be computed in a similar way. The result can be written as (4.18) using the translations given by (2.4). (In this case, the third column of (2.4) does not play any role.) For $i=1,2$ we should make two slight modifications: (a) The

Table 3. Values of the coefficient $C_{2}(\rho)$ from (4.22) for several values of the torus aspect ratio ρ.

ρ	$C_{2}(\rho)$
1	0.097119896855337
2	-0.326865280829340
3	-0.748187561687100
4	-0.877385104391125
5	-0.809168407448959
6	-0.682469414146146
7	-0.567445479079586
8	-0.483401539198706
9	-0.428249598449714
10	-0.394311952593824
15	-0.351150319692501
20	-0.349140134316672
∞	-0.349065850398866

factor r in (4.18) should be replaced by $r+1 / 2$, and (b) the sums over r in $Q_{1,1}$ and $Q_{1,2}$ start at $r=0$ rather than at $r=1$ (as in $Q_{1,3}$ and $Q_{1,4}$).

Putting all the pieces together we arrive at the final result

$$
\begin{equation*}
C_{\mathrm{H}, \mathrm{c}}(n, \rho)=\frac{8}{\pi} \log n+C_{0}(\rho)+\frac{C_{1}(\rho)}{n}+\frac{C_{2}(\rho)}{n^{2}}+\frac{C_{3}(\rho)}{n^{3}}+\mathcal{O}\left(\frac{1}{n^{4}}\right) \tag{4.19}
\end{equation*}
$$

where the coefficients $C_{i}(\rho)$ are given by

$$
\begin{align*}
& C_{0}(\rho)=\frac{8}{\pi}\left(\log \frac{2^{5 / 2}}{\pi}+\gamma_{E}-\frac{\pi}{4}\right)-\frac{4}{\theta_{2}+\theta_{3}+\theta_{4}}\left[\frac{4}{\pi} \sum_{v=2}^{4} \theta_{\nu} \log \theta_{v}+\rho \frac{\theta_{2}^{2} \theta_{3}^{2} \theta_{4}^{2}}{\theta_{2}+\theta_{3}+\theta_{4}}\right] \tag{4.20}\\
& C_{1}(\rho)=-2 \sqrt{2} \frac{\theta_{2} \theta_{3} \theta_{4}}{\theta_{2}+\theta_{3}+\theta_{4}}=-\sqrt{2} E_{1}(\rho) \tag{4.21}\\
& C_{2}(\rho)=-4 \rho \frac{\theta_{2} \theta_{3} \theta_{4}}{\theta_{2}+\theta_{3}+\theta_{4}} E_{3}(\rho)-\frac{\pi}{9}-4 A_{3}(\rho) \frac{\theta_{2}}{\theta_{2}+\theta_{3}+\theta_{4}}\left(\rho-\frac{\log 16}{\pi}\right)
\end{align*}
$$

$$
\begin{equation*}
+\frac{\pi}{3} \frac{\theta_{2}}{\theta_{2}+\theta_{3}+\theta_{4}}-\frac{16}{\pi}\left[A_{2}(\rho) \theta_{4}+A_{3}(\rho) \theta_{2}\right] \frac{\sum_{v=2}^{4} \theta_{v} \log \theta_{v}}{\left(\theta_{2}+\theta_{3}+\theta_{4}\right)^{2}}-\frac{4}{\theta_{2}+\theta_{3}+\theta_{4}} G(\rho) \tag{4.22}
\end{equation*}
$$

$C_{3}(\rho)=-\sqrt{2} E_{3}(\rho)$
where

$$
\begin{align*}
& G(\rho)=Q_{1,1}^{(2)} \theta_{3}+Q_{1,2}^{(2)} \theta_{4}+Q_{1,3}^{(2)} \theta_{2}-Q_{1,2}^{(0)} A_{2}(\rho) \theta_{4}-Q_{1,3}^{(0)} A_{3}(\rho) \theta_{2} \tag{4.24a}\\
& A_{2}(\rho)=p_{2}(\rho)+\tilde{p}_{2}(\rho)-\frac{1}{2}\left[p_{1}(\rho)+\tilde{p}_{1}(\rho)\right] \tag{4.24b}\\
& A_{3}(\rho)=p_{3}(\rho)+\tilde{p}_{2}(\rho)-p_{1}(\rho) \tag{4.24c}
\end{align*}
$$

The expressions for C_{0} and C_{1} were first obtained by Ferdinand and Fisher [18]. The results for C_{2} and C_{3} are new. In table 3 we show the values of the coefficient $C_{2}(\rho)$ for several values of the aspect ratio ρ.

Remarks. (1) As shown by Ferdinand and Fisher using the Jacobi transformations (A.4), the coefficient $C_{0}(\rho)$ satisfies the identity

$$
\begin{equation*}
C_{0}(\rho)=C_{0}\left(\rho^{-1}\right)+\frac{8}{\pi} \log \rho . \tag{4.25}
\end{equation*}
$$

Table 4. Fits of the function $C_{\mathrm{H}, \mathrm{c}}(n, \rho)-(8 / \pi) \log n-C_{0}(\rho)-C_{1}(\rho) / n(\operatorname{cf}(4.19) /(4.20) /(4.21))$ to the ansatz $D_{2} n^{-2}+D_{3} n^{-3}+D_{4} n^{-4}+D_{5} n^{-5}$ for several values of the torus aspect ratio ρ.

	$\rho=1$	$\rho=2$	$\rho=3$
D_{2}	0.097119896855	-0.3268652808	-0.7481875617
D_{3}	0.2922941107	0.2605022	0.2167250
D_{4}	0.014792	-1.0635	-1.8668
D_{5}	1.0326	0.59	0.45

Indeed, from relations $(4.21) /(4.23)$ we conclude that these two coefficients have the right behaviour under the transformation $\rho \rightarrow 1 / \rho(\mathrm{cf}(3.25 a) /(3.25 b))$. Finally, we have tested numerically that

$$
\begin{equation*}
C_{2}(\rho)=\frac{C_{2}(1 / \rho)}{\rho^{2}} \tag{4.26}
\end{equation*}
$$

is satisfied. This is a non-trivial test of the correctness of our result.
(2) We have also performed the following test: we have defined the function equal to the exact value of the specific heat $C_{\mathrm{H}, \mathrm{c}}(n, \rho)$ minus the first three terms of the expansion (4.19). Then, we have fitted the result to several ansätze. In particular, we show in table 4 the results for the ansatz $D_{2} / n^{2}+D_{3} / n^{3}+D_{4} / n^{4}+D_{5} / n^{5}$. We have used the same data as for the energy fits in section 3. The agreement between the values D_{2}, D_{3} and the exact values (4.22)/(4.23)/(3.23) is very good. It is also interesting to note that $D_{5}(\rho) \approx-\sqrt{2} B_{5}(\rho)$, where $B_{5}(\rho)$ is the coefficient obtained in a similar fit to the energy (see table 2).
(3) By inspection from table 3, the function $C_{2}(\rho)$ should have a zero at a non-trivial value of the aspect ratio $\rho_{\min }$ between 1 and 2 . We have evaluated numerically that value,

$$
\begin{equation*}
\rho_{\min } \approx 1.33544086 \tag{4.27}
\end{equation*}
$$

$\operatorname{By}(4.26)$, there is another zero of $C_{2}(\rho)$ at $\rho_{\min }^{-1} \approx 0.74881639$.
(4) In the limit $\rho \rightarrow \infty$ the coefficients C_{i} tend to the following limits:

$$
\begin{align*}
& C_{0}(\infty)=\frac{8}{\pi}\left(\log \frac{2^{5 / 2}}{\pi}+\gamma_{E}-\frac{\pi}{4}\right) \tag{4.28a}\\
& C_{1}(\infty)=0 \tag{4.28b}\\
& C_{2}(\infty)=-\frac{\pi}{9} \tag{4.28c}\\
& C_{3}(\infty)=0 \tag{4.28d}
\end{align*}
$$

Thus, only the coefficients associated with even powers of n^{-1} survive in this limit.

5. Further remarks and conclusions

The computation of the finite-size corrections to the energy and specific heat shows that, to order n^{-3} :
(a) All the corrections are integer powers of the quantity n^{-1}. In particular there are no multiplicative or additive logarithmic terms (except for the leading term in the specific heat).
(b) In the energy density we only find odd powers of n^{-1}. In particular, the corrections of order n^{-2} and n^{-4} are absent from (3.21).
(c) In the specific heat we find both even and odd powers of n^{-1}, but the coefficients of the corrections corresponding to odd powers of n^{-1} in (4.19) are proportional to the corresponding coefficients in the energy expansion (3.21): we found that $C_{i}(\rho)=$ $-\sqrt{2} E_{i}(\rho)$ for $i=1,3(\operatorname{cf}(4.21) /(4.23))$, and the numerical test performed at the end of sections 3 and 4 shows that the same ratio holds for the next coefficients $C_{5} / E_{5} \approx-\sqrt{2}$.

The natural question is whether these observations are general features that hold to all orders in n^{-1}. In this section, we will try to answer those questions.

Let us first analyse what happens to the energy. We first note that in the expansion (3.8) only even powers of n^{-1} occur. This expansion can be done to any finite order we want. The errors from neglecting the second sum in (3.5) and from extending the sums $\sum_{r=1}^{s(n)-1}$ to $\sum_{r=1}^{\infty}$ are at most of order $\mathcal{O}\left(n^{-(M-1)}\right)$, and they can be made as small as we want by making M in the definition of $s(n)(3.6)$ as large as we need. This means that in the series expansions of the quantities $\log P_{i}(i=1, \ldots, 4)(3.13)$ only even powers of n^{-1} appear. Secondly, we need to check that only even powers of n^{-1} occur in the expansion of $\log P_{0}$ (3.15). The argument is simple: all derivatives $f^{(k)}$ of the function $f(p)=\log \left(\sin p+\sqrt{1+\sin ^{2} p}\right)$ are integrable over the interval $[0, \pi]$. This implies that the Euler-MacLaurin formula (B.4) can be applied to any arbitrary order. As $f(0)=f(\pi)$, the correction of order n^{-1} vanishes and only corrections with even powers of n^{-1} can occur. The same conclusion applies to the expansion (3.15) and to the ratios R_{i} (3.20). Thus, from formula (3.3) we immediately conclude that only odd powers of n^{-1} appear in the finite-size corrections to the critical energy density. This result generalizes point (b) above. In particular, no logarithmic corrections occur in this expansion at any order.
Remark. The authors of [22] made an argument to explain the absence of the L^{-2} correction in the energy. They started with the Fortuin-Kasteleyn representation of the q-state Potts model on a graph G ($q=2$ corresponds to the Ising model) [29,30]:

$$
\begin{equation*}
Z_{G}(K)=\sum_{G^{\prime} \subseteq G} v^{N_{\mathrm{b}}\left(G^{\prime}\right)} q^{N_{\mathrm{c}}\left(G^{\prime}\right)} \tag{5.1}
\end{equation*}
$$

where N_{b} and N_{c} are respectively the number of bonds and connected clusters of the spanning subgraph $G^{\prime} \subseteq G$, and $v=\mathrm{e}^{K}-1$. Then, they introduced the standard finite-size-scaling ansatz for the free energy assuming there are no irrelevant operators [4]:

$$
\begin{equation*}
f_{G}(K)=f_{\mathrm{reg}}(K)+\frac{1}{L_{x} L_{y}} W\left(L_{x}^{1 / \nu}\left(K-K_{\mathrm{c}}\right)\right) . \tag{5.2}
\end{equation*}
$$

Here G is a square lattice of size $L_{x} \times L_{y}, f_{\mathrm{reg}}(K)$ is the regular part of the free energy, v is the usual critical exponent and $W(x)$ is an analytic function at $x=0$. They expanded $W(x)$ around $x=0$ and computed the mean values of N_{c} and N_{b} at criticality ($K=K_{\mathrm{c}}$). They found that

$$
\begin{align*}
& \left\langle N_{\mathrm{c}}\right\rangle=n_{\mathrm{c}} L_{x} L_{y}+A L_{x}^{1 / v}+B \tag{5.3a}\\
& \left\langle N_{\mathrm{b}}\right\rangle=n_{\mathrm{b}} L_{x} L_{y}+C L_{x}^{1 / v} \tag{5.3b}
\end{align*}
$$

with no constant correction to $\left\langle N_{\mathrm{b}}\right\rangle$. The internal energy (2.7) is related linearly to N_{b}; thus, in the Ising model at criticality, we have $E_{\mathrm{c}}=A_{0}+A_{1}(\rho) L_{x}^{-1}$ with no higher-order corrections in L_{x}^{-1}. They concluded that the L_{x}^{-2} correction to the critical energy should vanish. Indeed, this argument also implies the stronger result that there are no corrections of any kind beyond order L_{x}^{-1} —a conclusion that is unfortunately false! So it is not clear that the ansatz (5.2) (even if we include irrelevant operators) is enough to reproduce the right finite-size expansion of the internal energy of the critical two-dimensional Ising model (3.21). A detailed discussion of this point will be published elsewhere [21] (see also [14, section 3] for preliminary results).

The analysis of the specific heat is a little more involved. Using the same procedure as for the energy, we conclude that the fourth $\left(\sim R_{3} / R\right)$ and the last $\left(\sim R_{4}^{2} / R^{2}\right)$ terms of (4.1) provide corrections with even powers of n^{-1}. Furthermore, the sixth term of (4.1) $\left[\sim R_{4} /(R n)\right]$ will give only odd powers of n^{-1}.

Let us see now what happens to the terms $Q_{1, i}(4.2 a)-(4.2 d)$. The argument for $Q_{1,4}(4.2 d)$ is quite simple: the expansion of this quantity as a power series of $r \pi / n$ will only contain even powers of n^{-1}. Indeed, the errors from dropping the sum $\sum_{r=s(n)}^{\lfloor n / 2\rfloor}$ in the beginning of the computation, and for extending the sum $\sum_{r=1}^{s(n)-1}$ to $\sum_{r=1}^{\infty}$ at the end of the computation, are both at most of order $\mathcal{O}\left(x^{-(M-1)}\right)$ with the choice (3.6) for $s(n)$. Thus, the fifth term in (4.1) $\left(\sim \sum R_{i} Q_{1, i} / R\right)$ will have only corrections with even powers of n^{-1}.

Finally, let us analyse the behaviour of $Q_{1,+}(4.2 f)$. In the evaluation of $Q_{1,+}^{(2)}$ we had to apply the Euler-MacLaurin formula (B.4) to the function $f(p)=\sin ^{2 k-1} p$ with $k \geqslant 1$. The derivatives of this function are always integrable over the interval $[0, \pi]$, thus the expansion (4.5) only contains even powers of n^{-1}. In the evaluation of $Q_{1,+}^{(0)}$ we apply the Euler-MacLaurin formula (B.4) to the function $f(p)=1 / \sin p-1 / p+1 /(p-\pi)$. This function and all its derivatives are integrable over the interval $[0, \pi]$. Thus, equation (4.6) can be generalized to
$Q_{1,+}^{(0)}=\frac{2}{\pi}\left\{\sum_{p=1}^{n-1} \frac{1}{p}+\frac{1}{2 n}+\log \frac{2}{\pi}+\frac{\pi}{2} \sum_{k=1}^{\infty} \frac{B_{2 k}}{2 k}\left(\frac{\pi}{n}\right)^{2 k}\left[f^{(2 k-1)}(\pi)-f^{(2 k-1)}(0)\right]\right\}$.
This expansion contains in principle both even and odd powers of n^{-1}. We now plug in the well known result [28]

$$
\begin{equation*}
\sum_{p=1}^{L} \frac{1}{p}=\log L+\gamma_{E}+\frac{1}{2 L}-\sum_{k=1}^{\infty} \frac{B_{2 k}}{2 k} L^{-2 k} \tag{5.5}
\end{equation*}
$$

with $L=n-1$, and expand the resulting factors $\log (1-1 / n),(1-1 / n)^{-1}$ and $(1-1 / n)^{-2 k}$ in powers of n^{-1}. If we express the result as $\sum_{k} \alpha_{k} n^{-k}$, we immediately see that $\alpha_{1}=0$. The expression for the coefficients of the odd powers of n^{-1} is given by

$$
\begin{equation*}
\alpha_{2 k+1}=\frac{1}{2}-\frac{1}{2 k+1}-\sum_{m=1}^{k}\binom{2 k}{2 m-1} \frac{B_{2 m}}{2 m} \quad k \geqslant 1 . \tag{5.6}
\end{equation*}
$$

To prove $\alpha_{2 k+1}=0$, we can apply the general Euler-MacLaurin formula (B.1) to the function $f(x)=x^{2 k}$ with $n=0$ and $m=1$:

$$
\begin{equation*}
0=\int_{0}^{1} x^{2 k} \mathrm{~d} x-\frac{1}{2}+\sum_{m=1}^{k} \frac{B_{2 m}}{(2 m)!} \frac{(2 k)!}{(2 k-2 m+1)!}=-\alpha_{2 k+1} \tag{5.7}
\end{equation*}
$$

This implies that in the finite-size-scaling expansion of $Q_{1,+}$ only even powers of n^{-1} occur. The same holds for $Q_{1,-}$ (4.2e).

In summary, we have seen that in the finite-size-scaling expansion of the specific heat at criticality only integer powers of n^{-1} appear (except of course for the leading term $(8 / \pi) \log n$). Furthermore, all contributions to the specific heat (4.1) give even powers of n^{-1}, except for one, namely, the sixth term in (4.1), which has the form

$$
\begin{equation*}
\frac{2 \sqrt{2}}{n} \lim _{\tau \rightarrow 0} \frac{R_{4}(\tau, n, \rho)}{R(0, n, \rho)} \operatorname{coth} \tau \rho . \tag{5.8}
\end{equation*}
$$

If we compare it to the expression for the energy (3.3) we conclude that the coefficients associated with odd powers of n^{-1} in the energy and specific-heat expansions are proportional.

In particular $(\mathrm{cf},(2.12) /(2.13))$, and recalling that $E_{2 k}=0$, we obtain

$$
\frac{E_{k}(\rho)}{C_{k}(\rho)}=\left\{\begin{array}{lll}
-1 / \sqrt{2} & \text { for } & k \text { odd } \tag{5.9}\\
0 & \text { for } & k \text { even }
\end{array}\right.
$$

This generalizes the results $(4.21) /(4.23)$. Note in particular that the ratio $E_{k}(\rho) / C_{k}(\rho)$ is independent of the aspect ratio ρ.

Let us conclude with a brief discussion about the generality of the above results. It is clear that the leading-term coefficients E_{0} and C_{00} in $(2.12) /(2.13)$ do not depend on the boundary conditions, as they are bulk quantities. However, the finite-size-scaling coefficients $E_{k}(\rho)$ and $C_{k}(\rho)$ with $k \geqslant 1$ are expected to depend in general on the boundary conditions of the system. In particular, Lu and Wu [31] have obtained the finite-size expansion of the free energy for a critical Ising model with two different boundary conditions (namely, a Möbius strip and a Klein bottle). They found an expansion of the form

$$
\begin{equation*}
f_{\mathrm{c}}(n, \rho)=f_{0}+\frac{f_{1}(\rho)}{n}+\frac{f_{2}(\rho)}{n^{2}}+\cdots \tag{5.10}
\end{equation*}
$$

where the coefficients $f_{k}(\rho)$ with $k=1,2$ do depend explicitly on the boundary conditions.
On the other hand, the fact that the ratio $E_{k}(\rho) / C_{k}(\rho)$ is a ρ-independent number suggests that it might be universal, i.e. independent of the details of the Hamiltonian. It would be very interesting to investigate this possibility. A first step in this direction has been achieved by Izmailian and Hu [32], who computed the finite-size expansion of the free energy per spin f_{N} and the inverse correlation length ξ_{N}^{-1} for a critical Ising model on several $N \times \infty$ lattices with periodic boundary conditions (namely, square, hexagonal and triangular). On each lattice they found expansions of the form

$$
\begin{align*}
& f_{N}-f_{0}=\sum_{k=1}^{\infty} \frac{f_{k}}{N^{2 k}} \tag{5.11a}\\
& \xi_{N}^{-1}=\sum_{k=1}^{\infty} \frac{b_{k}}{N^{2 k-1}} \tag{5.11b}
\end{align*}
$$

where the coefficients b_{k} and f_{k} do depend on the lattice. However, their ratio b_{k} / f_{k} is the same for all three lattices and equal to $b_{k} / f_{k}=\left(2^{2 k}-1\right) /\left(2^{2 k-1}-1\right)$. They also computed the corresponding expansions for a quantum spin chain belonging to the two-dimensional Ising model universality class. They found that the ratio b_{k} / f_{k} takes the same value as in the Ising case. This result supports the conjecture that this ratio is a universal quantity.

Acknowledgments

We wish to thank Nickolay Izmailian for correspondence and useful clarifications about [22]; Birte Jackson and Robert Shrock for their warm hospitality and discussions during the authors' visit to the C N Yang Institute for Theoretical Physics, where this work was mainly done, and Alan Sokal for useful discussions and for a critical reading of the first draft of this manuscript. The authors' research was supported in part by CICyT (Spain) grants AEN97-1680 and AEN990990.

Appendix A. Theta functions

In this appendix we gather all the definitions and properties of the Jacobi θ-functions needed in this paper. We follow the notation of [18], which was adapted from Whittaker and Watson [33].

We define the Jacobi θ-functions θ_{i} at $z=0$ in the following way ${ }^{11}$:

$$
\begin{align*}
& \theta_{2} \equiv \theta_{2}\left(0, \mathrm{e}^{-\pi \rho}\right)=2 \theta_{0} \mathrm{e}^{-\pi \rho / 4} \prod_{r=1}^{\infty}\left(1+\mathrm{e}^{-2 r \pi \rho}\right)^{2} \tag{A.1a}\\
& \theta_{3} \equiv \theta_{3}\left(0, \mathrm{e}^{-\pi \rho}\right)=\theta_{0} \prod_{r=1}^{\infty}\left(1+\mathrm{e}^{-(2 r-1) \pi \rho}\right)^{2} \tag{A.1b}\\
& \theta_{4} \equiv \theta_{4}\left(0, \mathrm{e}^{-\pi \rho}\right)=\theta_{0} \prod_{r=1}^{\infty}\left(1-\mathrm{e}^{-(2 r-1) \pi \rho}\right)^{2} . \tag{A.1c}
\end{align*}
$$

The function $\theta_{0}(\rho)$ is defined as

$$
\begin{equation*}
\theta_{0}=\theta_{0}(\rho)=\prod_{r=1}^{\infty}\left(1-\mathrm{e}^{-2 \pi r \rho}\right) \tag{A.2}
\end{equation*}
$$

and it satisfies the following identity:

$$
\begin{equation*}
\theta_{0}=\mathrm{e}^{\pi \rho / 12}\left[\frac{1}{2} \theta_{2} \theta_{3} \theta_{4}\right]^{1 / 3} \tag{A.3}
\end{equation*}
$$

These θ-functions (A.1) satisfy the Jacobi imaginary transformation

$$
\begin{align*}
& \theta_{2}\left(0, \mathrm{e}^{-\pi / \rho}\right)=\rho^{1 / 2} \theta_{4}\left(0, \mathrm{e}^{-\pi \rho}\right) \tag{4a}\\
& \theta_{3}\left(0, \mathrm{e}^{-\pi / \rho}\right)=\rho^{1 / 2} \theta_{3}\left(0, \mathrm{e}^{-\pi \rho}\right) \tag{A.4b}\\
& \theta_{4}\left(0, \mathrm{e}^{-\pi / \rho}\right)=\rho^{1 / 2} \theta_{2}\left(0, \mathrm{e}^{-\pi \rho}\right)
\end{align*}
$$

Appendix B. The Euler-MacLaurin formula

The Euler-MacLaurin formula (see e.g. [34, appendix B]) is the main tool we need to compute asymptotic series. The general form of this formula is given by

$$
\begin{gather*}
\sum_{k=n}^{m-1} f(k)=\int_{n}^{m} \mathrm{~d} x f(x)-\frac{1}{2}[f(m)-f(n)]+\sum_{p=1}^{N} \frac{B_{2 p}}{(2 p)!}\left[f^{(2 p-1)}(m)-f^{(2 p-1)}(n)\right] \\
+\frac{1}{(2 N+1)!} \int_{n}^{m} \mathrm{~d} x f^{(2 N+1)}(x) B_{2 N+1}(x-\lfloor x\rfloor) \tag{B.1}
\end{gather*}
$$

where B_{n} are the Bernoulli numbers and $B_{n}(x)$ are the Bernoulli polynomials defined by

$$
\begin{equation*}
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k} x^{n-k} \tag{B.2}
\end{equation*}
$$

In this paper we are mainly interested in sums of the form

$$
\begin{equation*}
\frac{1}{L} \sum_{n=0}^{\alpha L-1} f(p) \tag{B.3}
\end{equation*}
$$

where $p=2 \pi n / L$. The asymptotic expansion of the sum (B.3) in the limit $L \rightarrow \infty$ with α fixed can be obtained from (B.1):
$\frac{1}{L} \sum_{n=0}^{\alpha L-1} f(p)=\int_{0}^{2 \pi \alpha} \frac{\mathrm{~d} p}{2 \pi} f(p)-\frac{1}{2 L}[f(2 \pi \alpha)-f(0)]$
${ }^{11}$ In this particular case, $\theta_{1}\left(0, \mathrm{e}^{-\pi \rho}\right)=0$.

$$
\begin{align*}
& +\frac{1}{2 \pi} \sum_{k=1}^{N} \frac{B_{2 k}}{(2 k)!}\left(\frac{2 \pi}{L}\right)^{2 k}\left[f^{(2 k-1)}(2 \pi \alpha)-f^{(2 k-1)}(0)\right] \\
& +\frac{1}{(2 N+1)!}\left(\frac{2 \pi}{L}\right)^{2 N+1} \int_{0}^{2 \pi \alpha} \frac{\mathrm{~d} p}{2 \pi} f^{(2 N+1)}(p) \hat{B}_{2 N+1}(p) \tag{B.4}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{B}_{n}(p)=B_{n}\left(\frac{L p}{2 \pi}-\left\lfloor\frac{L p}{2 \pi}\right\rfloor\right) . \tag{B.5}
\end{equation*}
$$

The expression (B.4) gives the asymptotic expansion of the sum (B.3) in powers of L^{-1} up to order $L^{-2 N}$ if the last integral in (B.4) is finite (i.e. if $f^{(2 N+1)}(p)$ is integrable in the interval $[0,2 \alpha \pi])$. If $f(0)=f(2 \pi \alpha)$, then only even powers of L^{-1} occur in the expansion (B.4).

References

[1] Fisher M E 1972 Critical Phenomena Proc. 51th Enrico Fermi Summer School (Varena) ed M S Green (New York: Academic)
[2] Fisher M E and Barber M N 1972 Phys. Rev. Lett. 281516
[3] Barber M N 1983 Phase Transitions and Critical Phenomena vol 8, ed C Domb and J L Lebowitz (New York: Academic)
[4] Privman V 1990 Finite Size Scaling and Numerical Simulation of Statistical Systems ed V Privman (Singapore: World Scientific)
[5] Caracciolo S, Edwards R G, Ferreira S J, Pelissetto A and Sokal A D 1995 Phys. Rev. Lett. 742969
(Caracciolo S, Edwards R G, Ferreira S J, Pelissetto A and Sokal A D 1994 Preprint hep-lat/9409004)
[6] Mana G, Pelissetto A and Sokal A D 1997 Phys. Rev. D 553674
(Mana G, Pelissetto A and Sokal A D 1996 Preprint hep-lat/9610021)
[7] Salas J and Sokal A D 2000 J. Stat. Phys. 98551
(Salas J and Sokal A D 1999 Preprint cond-mat/9904038v2)
[8] Campostrini M, Hasenbusch M, Pelissetto A, Rossi P and Vicari E 2000 Critical behavior of the three-dimensional XY universality class Preprint cond-mat/0010360
[9] Kamieniarz G and Blöte H W J 1993 J. Phys. A: Math. Gen. 26201
[10] Salas J and Sokal A D 1997 J. Stat. Phys. 88567 (Salas J and Sokal A D 1996 Preprint hep-lat/9607030)
[11] Guo H and Jasnow D 1987 Phys. Rev. B 351846 Guo H and Jasnow D 1989 Phys. Rev. E 39753
[12] Aharony A and Fisher M E 1983 Phys. Rev. B 274394
[13] Gartenhaus S and McCullough W S 1988 Phys. Rev. B 3811688
[14] Salas J and Sokal A D 1999 Universal amplitude ratios in the critical two-dimensional Ising model on a torus Preprint cond-mat/9904038v1
[15] Nickel B 1999 J. Phys. A: Math. Gen. 323889
[16] Nickel B 2000 J. Phys. A: Math. Gen. 331693
[17] Caselle M, Hasenbusch M, Pelissetto A and Vicari E 2000 J. Phys. A: Math. Gen. 338171 (Caselle M, Hasenbusch M, Pelissetto A and Vicari E 2000 Preprint hep-th/0003049)
[18] Ferdinand A E and Fisher M E 1969 Phys. Rev. 185832
[19] Kleban P and Akinci G 1983 Phys. Rev. Lett. 511058
[20] Kleban P and Akinci G 1983 Phys. Rev. B 281466
[21] Salas J and Sokal A D in preparation
[22] Hu C-K, Chen J-A, Izmailian N Sh and Kleban P 1999 Phys. Rev. E 606491 (Hu C-K, Chen J-A, Izmailian N Sh and Kleban P 1999 Preprint cond-mat/9905203v2)
[23] Izmailian N Sh and Hu C-K 2000 Ising model on the square $M \times N$ lattice: exact finite-size calculations Preprint cond-mat/0009024
[24] Itzykson C and Drouffe J-M 1989 Statistical Field Theory vol 2 (Cambridge: Cambridge University Press)
[25] Onsager L 1944 Phys. Rev. 65117
[26] Ferdinand A E 1967 J. Math. Phys. 82332
[27] Izmailian N Sh 2000 Private communication
[28] Gradshteyn I S and Ryzhik I M 1965 Table of Integrals, Series and Products (New York: Academic)
[29] Kasteleyn P W and Fortuin C M 1969 J. Phys. Soc. Japan 2611
[30] Fortuin C M and Kasteleyn P W 1972 Physica 57536
[31] Lu W T and Wu F Y 2000 Ising model on nonorientable surfaces: Exact solution for the Möbius strip and the Klein bottle Preprint cond-mat/0007325
[32] Izmailian N Sh and Hu C-K 2000 Phys. Rev. E 6326107 (Izmailian N Sh and Hu C-K 2000 Preprint cond-mat/0009102)
[33] Whittaker E T and Watson G N 1927 A Course of Modern Analysis 4th edn (Cambridge: Cambridge University Press)
[34] Caracciolo S and Pelissetto A 1998 Phys. Rev. D 58105007

[^0]: 5 In this paper we are following basically the notation used by Ferdinand and Fisher in [18], with a few minor modifications.

[^1]: ${ }^{6}$ In conformal-field-theory language, the modular parameter of the torus is $\tau=\mathrm{i} \rho$ [24], where this τ has nothing to do with the temperature-like parameter defined in (2.14).

[^2]: ${ }^{7}$ The parameter τ plays the same role as the usual finite-size-scaling parameter $x \equiv L\left(T-T_{\mathrm{c}}\right)$. Indeed, to leading order in $K-K_{\mathrm{c}}$ we have $\tau=-2 n\left(K-K_{\mathrm{c}}\right)$.

[^3]: ${ }^{8}$ It is easy to verify that $f^{(3)}(p)$ is integrable over $[0, \pi]$. This means that the next term in the expansion (3.16) is of order $\mathcal{O}\left(n^{-4}\right)$.
 9 The leading terms of equations (3.16)/(3.17) were obtained by Ferdinand [26].

[^4]: ${ }^{10}$ The leading term of this equation was obtained by Onsager [25].

